深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202408-202408] [清除筛选条件]
当前共找到 1080 篇文献,本页显示第 581 - 600 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
581 2024-08-26
Artificial intelligence in COPD CT images: identification, staging, and quantitation
2024-Aug-22, Respiratory research IF:4.7Q1
综述 本文综述了人工智能(AI)在慢性阻塞性肺病(COPD)CT影像中的应用,包括识别、分期和量化 强调了AI在COPD诊断和管理中的创新应用,特别是在机器学习和深度学习方面 讨论了数据复杂性和AI在临床环境中整合的挑战 旨在全面理解AI在COPD诊断和管理中的当前状态和未来潜力 COPD的识别、分期和影像表型 计算机视觉 慢性阻塞性肺病 机器学习, 深度学习 NA 影像 NA
582 2024-08-26
Super-resolution reconstruction for early cervical cancer magnetic resonance imaging based on deep learning
2024-Aug-22, Biomedical engineering online IF:2.9Q3
研究论文 本研究旨在开发一种专门针对早期宫颈癌磁共振成像图像质量和高分辨率增强的超分辨率算法 采用创新的SR算法,结合复杂架构和深度卷积核,通过多输入模型训练匹配的输入图像对,显著提高了图像质量和分辨率 NA 开发适用于早期宫颈癌磁共振成像的超分辨率算法,以提高图像质量和分辨率 早期宫颈癌磁共振成像图像 计算机视觉 宫颈癌 深度学习 CNN 图像 两个不同放大因子的独立数据集
583 2024-08-26
A hybrid deep learning approach to solve optimal power flow problem in hybrid renewable energy systems
2024-Aug-21, Scientific reports IF:3.8Q1
研究论文 本文提出了一种结合深度强化学习与量子启发遗传算法的新型混合模型,用于解决混合可再生能源系统中的最优潮流问题 该研究引入深度强化学习与量子启发遗传算法的结合,有效提高了全局搜索能力和适应实时环境的能力 文章未明确提及具体限制 确保电压稳定性,最小化功率损耗和燃料成本 混合可再生能源系统中的最优潮流问题 机器学习 NA 深度强化学习 DRL-QIGA 系统数据 使用修改后的IEEE 30总线系统进行实验评估
584 2024-08-26
Context-embedded hypergraph attention network and self-attention for session recommendation
2024-Aug-21, Scientific reports IF:3.8Q1
研究论文 本文提出了一种名为C-HAN的新型会话推荐模型,该模型包含上下文嵌入的超图注意力网络和自注意力两个并行模块,旨在捕捉项目间的内在一致性和顺序依赖性 C-HAN模型引入了不同类型的交互上下文以增强模型的上下文感知能力,并通过软注意力机制有效整合两种类型的信息 NA 解决会话推荐中用户意图建模的挑战,特别是在短历史序列中有限证据的情况下 会话推荐中的用户意图建模 机器学习 NA 超图注意力网络,自注意力机制 C-HAN 序列数据 三个真实世界数据集
585 2024-08-26
Phosphorus prediction in the middle reaches of the Yangtze river based on GRA-CEEMDAN-CNLSTM-DBO
2024-Aug-21, Scientific reports IF:3.8Q1
研究论文 本研究通过集成先进的建模技术,旨在提高长江中游总磷(TP)浓度的预测准确性 提出了GRA-CEEMDAN-CN1D-LSTM-DBO模型,该模型在预测TP浓度方面显著优于传统的BP、LSTM和GRU模型 随着与大坝距离的增加,预测精度逐渐下降,表明三峡大坝运营对下游TP浓度的影响减弱 提高长江中游总磷浓度的预测准确性,为洪水季节的动态水位控制提供有价值的见解 长江中游的总磷浓度 机器学习 NA Grey Relational Analysis (GRA) CN1D-LSTM-DBO 水质量参数数据 使用了三峡水库(TGR)的运营和排放数据,以及下游河段的水质参数
586 2024-08-26
A comparison between machine and deep learning models on high stationarity data
2024-Aug-21, Scientific reports IF:3.8Q1
研究论文 本文比较了机器学习和深度学习模型在高度平稳数据上的性能,特别是预测意大利收费站车辆通过数量的情况 研究发现某些机器学习算法在时间序列特征识别和预测准确性上优于深度学习模型 NA 研究时间序列特征,并比较机器学习和深度学习模型在预测任务上的表现 预测意大利收费站车辆通过数量 机器学习 NA 支持向量机、随机森林、极端梯度提升(XGBoost)、循环神经网络与长短期记忆(RNN-LSTM) RNN-LSTM 时间序列数据 8766行数据,6列相关收费站信息
587 2024-08-26
The combination of HSI and NMR techniques with deep learning for identification of geographical origin and GI markers of Lycium barbarum L
2024-Aug-21, Food chemistry IF:8.5Q1
研究论文 本研究提出了一种结合高光谱成像(HSI)、核磁共振(NMR)和改进的ResNet-34深度学习模型,用于准确识别枸杞的地理来源和地理标志(GI)标记 本研究通过SHapley Additive exPlanations(SHAP)基于特征选择提高了模型的准确性和效率,并通过Pearson相关性分析增强了HSI数据的解释性 NA 快速准确地识别枸杞的地理来源 枸杞的地理来源和地理标志标记 机器学习 NA 高光谱成像(HSI)、核磁共振(NMR) ResNet-34 图像 未明确提及样本数量
588 2024-08-26
Industry 4.0 Technologies in Maternal Health Care: Bibliometric Analysis and Research Agenda
2024-Aug-08, JMIR pediatrics and parenting IF:2.1Q2
文献计量分析 本研究探讨了工业4.0技术在孕产妇保健中的当前实施情况和影响,并进行了主题景观映射,提出了未来研究议程 提出了一个包含四个绩效因素的概念框架,用于流程改进,并建议了治理、采用、基础设施、隐私和安全方面的研究议程 NA 调查工业4.0技术在孕产妇保健中的应用和影响,并提出未来研究方向 工业4.0技术在孕产妇保健中的应用,包括护理流程、治疗方法和自动化妊娠监测 数字健康 孕产妇保健 文献计量分析 NA 文献 从1985年到2022年,共检索到1003篇英文论文,最终保留136篇
589 2024-08-26
Deep Learning for Histopathological Assessment of Esophageal Adenocarcinoma Precursor Lesions
2024-Aug, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc IF:7.1Q1
研究论文 本文开发了一种两阶段的AI系统,利用深度学习技术对Barrett食管相关异型增生进行组织病理学评估 该AI系统在评估Barrett食管相关异型增生的准确性上超过了55名国际胃肠病理学家中的53名 AI系统在实际临床环境中的表现尚未完全明确 提高病理工作流程的效率和准确性 Barrett食管相关异型增生的组织病理学评估 数字病理学 食管腺癌 深度学习 NA 图像 290张全切片图像
590 2024-08-26
Extent and Topography of Subretinal Drusenoid Deposits Associate With Rod-Mediated Vision in Aging and AMD: ALSTAR2 Baseline
2024-Aug-01, Investigative ophthalmology & visual science IF:5.0Q1
研究论文 本研究使用监督深度学习量化了与年龄相关性黄斑变性(AMD)相关的亚视网膜硬性沉积物(SDDs)的负担,并探讨了其与视力和感光细胞地形的关系。 采用卷积神经网络对近红外反射图像进行SDD分割,并通过光学相干断层扫描进行手动校对,提高了SDD面积测量的准确性。 NA 研究SDD面积与杆状细胞介导的视力之间的关系,并探讨SDD形成的地形因素。 亚视网膜硬性沉积物(SDDs)及其与视力和感光细胞地形的关系。 数字病理学 年龄相关性黄斑变性 卷积神经网络 CNN 图像 428只眼睛,来自428名60岁以上的参与者
591 2024-08-26
aiSEGcell: User-friendly deep learning-based segmentation of nuclei in transmitted light images
2024-Aug, PLoS computational biology IF:3.8Q1
研究论文 介绍了一种基于卷积神经网络(CNN)的用户友好型软件aiSEGcell,用于在明场图像中分割细胞核和细胞 aiSEGcell能够准确分割来自具有挑战性的明场图像的细胞核,类似于手动分割,并且不需要转基因或染料荧光标记 目前需要优化的实验条件和计算专家 开发一种用户友好的软件,用于在明场图像中自动分割细胞核和细胞 不同原代细胞类型在2D培养中的细胞核分割 计算机视觉 NA 卷积神经网络(CNN) CNN 图像 110万个细胞核,2万张图像
592 2024-08-25
HyEpiSeiD: a hybrid convolutional neural network and gated recurrent unit model for epileptic seizure detection from electroencephalogram signals
2024-Aug-21, Brain informatics
research paper 本文提出了一种名为HyEpiSeiD的深度学习框架,用于从脑电图信号中检测癫痫发作 HyEpiSeiD结合了卷积神经网络和门控循环单元,实现了高精度的癫痫发作检测 NA 实现高精度的患者特异性癫痫发作检测 从脑电图信号中检测癫痫发作 machine learning NA NA CNN, LSTM 信号 使用了两个公开数据集,UCI Epilepsy和Mendeley数据集
593 2024-08-25
Real-time estimation of the optimal coil placement in transcranial magnetic stimulation using multi-task deep learning
2024-08-21, Scientific reports IF:3.8Q1
研究论文 本文开发了一种多任务深度神经网络,用于实时估计经颅磁刺激(TMS)中最佳线圈放置位置 提出的Attention U-Net模型能够在35毫秒内提供精确的线圈优化,远快于传统的数值计算框架 NA 开发一种能够在实时应用中优化TMS线圈放置的计算模型 TMS中的最佳线圈放置位置及其诱导的电场 机器学习 NA 多任务深度学习 Attention U-Net 数值优化数据 包括健康受试者和胶质母细胞瘤患者
594 2024-08-25
Predicting 1, 2 and 3 year emergent referable diabetic retinopathy and maculopathy using deep learning
2024-Aug-21, Communications medicine IF:5.4Q1
研究论文 本研究开发并验证了深度学习系统(DLS),用于预测1、2和3年内出现的可转诊糖尿病视网膜病变(DR)和黄斑病变 本研究采用了多模态深度学习系统,结合风险因素特征和彩色眼底照片,显著提高了预测性能 NA 旨在通过个性化筛查,及时为高风险个体提供治疗,同时减轻低风险个体的筛查负担 糖尿病视网膜病变(DR)和黄斑病变的预测 计算机视觉 糖尿病视网膜病变 深度学习 多模态深度学习系统(DLS) 图像 开发集包含162,339只眼睛,验证集包含27,996只眼睛,外部测试集包含6,928只眼睛
595 2024-08-24
[Enzyme metabolism and functions in vitamin biosynthesis pathways]
2024-Aug-25, Sheng wu gong cheng xue bao = Chinese journal of biotechnology
综述 本文综述了维生素生物合成途径中酶的研究进展,详细介绍了13种维生素合成途径中酶的催化机制、动力学特性和生物学应用 探讨了深度学习方法在维生素合成相关酶性质研究中的应用潜力 缺乏大量关键酶的详细酶学性质研究限制了维生素生产效率的提升和对维生素合成机制的深入理解与优化 全面回顾维生素生物合成途径中酶的研究进展,并探讨酶学性质研究的新方法 维生素生物合成途径中的酶及其催化机制、动力学特性和生物学应用 生物技术 NA 深度学习 NA NA NA
596 2024-08-24
Predicting time-of-flight with Cerenkov light in BGO: a three-stage network approach with multiple timing kernels prior
2024-Aug-23, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种三阶段网络方法,利用Cerenkov光和闪烁光预测飞行时间(TOF),以提高正电子发射断层扫描(PET)重建的图像质量 通过结合Cerenkov光和闪烁光的高时间分辨率和高能量分辨率,利用深度学习模型和多时间核先验知识进行TOF预测,提高了TOF-PET研究的预测性能 NA 提高正电子发射断层扫描(PET)重建中的图像质量和信号噪声比 利用BGO探测器同时发射的Cerenkov光和闪烁光进行飞行时间(TOF)预测 计算机视觉 NA 深度学习 CNN, Transformer 图像 25类信号上升时间的数据分类
597 2024-08-24
Automated identification of fleck lesions in Stargardt disease using deep learning enhances lesion detection sensitivity and enables morphometric analysis of flecks
2024-Aug-22, The British journal of ophthalmology
研究论文 本研究利用深度学习模型自动识别Stargardt病中的斑点病变,并进行形态学分析 本研究首次成功训练人工智能识别Stargardt病中的斑点病变,提高了检测灵敏度 人工智能模型在检测斑点时产生了更多的假阳性结果,需要进一步优化 评估人工智能在识别Stargardt病斑点病变中的应用 Stargardt病患者的斑点病变 机器学习 眼科疾病 深度学习 NA 图像 170只眼睛,来自85名连续确诊的Stargardt病患者
598 2024-08-24
AI-Enhanced Lung Cancer Prediction: A Hybrid Model's Precision Triumph
2024-Aug-22, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本研究提出了一种结合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的混合深度学习模型,用于从患者的医疗记录中检测肺癌 该模型在MIMIC IV数据集上的表现优于LSTM和BioBERT模型,显示出更高的准确性和Matthews相关系数(MCC) NA 旨在提高肺癌检测的准确性和早期诊断 肺癌检测 机器学习 肺癌 NA 混合深度学习模型(CNN和BiLSTM) 文本 使用了MIMIC IV数据集和Yelp Review Polarity数据集进行比较分析
599 2024-08-24
Self-Reported Learning Strategies and Preferences in Health Informatics
2024-Aug-22, Studies in health technology and informatics
研究论文 本研究通过使用动机策略学习问卷(MSLQ)和深度与表面学习理论,调查了健康信息学(HI)课程中学生的学习策略和偏好 首次详细探讨了健康信息学课程中学生的学习策略和偏好,填补了该领域的知识空白 研究仅限于三门健康信息学课程,可能无法全面代表所有健康信息学课程的情况 探讨健康信息学课程中学生的学习策略和偏好,为教育者提供改进建议 健康信息学课程的学生及其学习策略和偏好 健康信息学 NA NA NA 问卷调查数据 三门健康信息学课程的学生
600 2024-08-24
Enhancing Periodontal Treatment Through the Integration of Deep Learning-Based Detection with Bayesian Network Models
2024-Aug-22, Studies in health technology and informatics
研究论文 本研究将深度学习用于牙周病检测,并将其整合到基于贝叶斯网络的临床决策支持模型中,以实现全面的牙周护理 本研究创新地将深度学习技术与贝叶斯网络模型结合,用于牙周病的检测和治疗方案的推荐 NA 提高牙周病治疗的效果和准确性 牙周病及其治疗方案 机器学习 牙周病 深度学习 贝叶斯网络 图像 临床数据和放射图像
回到顶部