深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202408-202408] [清除筛选条件]
当前共找到 1079 篇文献,本页显示第 921 - 940 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
921 2024-08-04
Metabolic phenotyping with computed tomography deep learning for metabolic syndrome, osteoporosis and sarcopenia predicts mortality in adults
2024-Aug, Journal of cachexia, sarcopenia and muscle
研究论文 本文开发了一种基于计算机断层扫描(CT)深度学习的多结果模型,用于同时检测代谢综合征、骨质疏松症和肌少症,并预测成人的长期死亡率 创新点在于利用CT多层身体成分参数同时识别代谢综合征、骨质疏松症和肌少症的代谢簇,并评估其对长期死亡率的预后价值 研究的外部测试集样本大多来自一个社区和一家三级医院,可能存在人口选择偏倚 研究旨在通过CT成像分析评估代谢综合征、骨质疏松症和肌少症对成人死亡风险的影响 研究对象包括516名参与者构成的衍生集和10,141名接受腹部CT检查的个体 数字病理学 NA CT成像 多层感知器(MLP) 成像数据 衍生集516名,外部测试集1为380名,外部测试集2为10,141名
922 2024-08-04
The accuracy and quality of image-based artificial intelligence for muscle-invasive bladder cancer prediction
2024-Aug-01, Insights into imaging IF:4.1Q1
研究论文 本文评估了基于图像的人工智能在预测肌肉浸润性膀胱癌的诊断性能 提出了使用CLAIM、RQS和PROBAST工具对人工智能研究的报告质量和方法学质量进行评估 尽管模型表现良好,但报告质量和方法学质量普遍较低,存在高风险偏倚 评估图像基人工智能在预测肌肉浸润性膀胱癌的诊断表现 包括4256名患者的21项研究 数字病理学 膀胱癌 计算机断层扫描 (CT),磁共振成像 (MRI),放射组学,深度学习 深度学习 图像 包含4256名患者
923 2024-08-04
Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach
2024-Aug-01, Scientific reports IF:3.8Q1
研究论文 本文提出了一种新颖的耦合分解-优化-深度学习模型,用于预测矿水涌入量 结合了完整集合经验模态分解与自适应噪声、北鵰优化和长短期记忆网络的创新模型 传统模型和单一机器学习方法在预测突发水涌量变化方面的效能仍然存在不足 旨在提高矿水涌入量的预测准确性,确保煤矿安全 矿水涌入预测方法及其在不同模型中的表现 机器学习 NA CEEMDAN, NGO, LSTM LSTM 时间序列数据 未明确说明样本量的具体数量
924 2024-08-04
Artificial intelligence in fusion protein three-dimensional structure prediction: Review and perspective
2024-Aug, Clinical and translational medicine IF:7.9Q1
综述 本论文回顾了人工智能在融合蛋白三维结构预测中的最新进展和挑战 文章强调了使用深度学习模型预测融合蛋白三维结构的最新进展,并探讨了四种建模方法的优缺点 对于融合蛋白的预测,模板基础模型面临着已知模板结构在数据库中通常缺乏的问题 探讨利用人工智能方法预测融合蛋白三维结构的优势和挑战 关注于融合蛋白的三维结构预测 人工智能 癌症 深度学习 AlphaFold2, RoseTTAFold, tr-Rosetta, D-I-TASSER NA NA
925 2024-08-04
A QR code-enabled framework for fast biomedical image processing in medical diagnosis using deep learning
2024-Aug-01, BMC medical imaging IF:2.9Q2
研究论文 本文提出了一种利用QR码的框架,以加速医学影像处理和医疗诊断。 采用深度学习QR码技术,优化了数据库设计,创新性地解决了数据存储基础设施成本和信息检索速度问题。 未提及具体使用的深度学习模型和技术细节,缺乏对系统在不同条件下表现的全面评估。 研究如何通过高效的医学影像处理来加速医疗条件的诊断。 使用来自Crawford影像和数据档案及Duke CIVM的医疗数据集进行评估。 数字病理学 NA 深度学习 NA 医学影像 使用来自两个数据集的医疗数据集进行评估
926 2024-08-04
Air quality forecasting using a spatiotemporal hybrid deep learning model based on VMD-GAT-BiLSTM
2024-Aug-01, Scientific reports IF:3.8Q1
研究论文 提出了一种基于VMD-GAT-BiLSTM的时空混合深度学习模型用于空气质量预测。 该模型结合了变分模态分解、图注意网络和双向长短时记忆网络,以提高空气质量预测的准确性。 模型的有效性依赖于所使用的监测数据的质量和完整性。 旨在提高空气质量预测的精度,从而增强早期预警系统的能力。 主要研究空气质量数据,探讨不同监测站之间的空间关系和时间特征。 机器学习 NA VMD, GAT, BiLSTM VMD-GAT-BiLSTM PM数据 使用了收集的北京空气质量数据集进行实验
927 2024-08-05
A hybrid approach to improvement of watershed water quality modeling by coupling process-based and deep learning models
2024-Aug, Water environment research : a research publication of the Water Environment Federation IF:2.5Q2
研究论文 提出了一种混合模型,通过结合过程驱动模型和深度学习模型来改善流域水质建模 开发了一种混合模型,将未校准的过程驱动模型与数据驱动模型相结合,以提高流域建模的准确性 模型参数校准和验证过程耗时且具有固有的不确定性 研究旨在解决过程驱动模型校准和验证中的各种挑战 结合地理信息和五年观察数据构建的Yeongsan河流域的土壤与水评估工具 数字病理学 NA 深度学习 长短期记忆网络 (LSTM) 观测数据 5年观测数据
928 2024-08-05
Multi-level structural damage characterization using sparse acoustic sensor networks and knowledge transferred deep learning
2024-Aug, Ultrasonics IF:3.8Q1
研究论文 本研究展示了一种基于机器学习的多级损伤特征描述方法,利用稀疏传感器网络和知识转移的深度学习 提出了一种新颖的网络空间辅助和自适应卷积技术,以实现深度学习算法中的知识高效转移 未提及具体的限制 探索在复杂结构中基于机器学习的结构健康监测方法 在铝板上进行实验,铝板上人为诱导了缺陷 机器学习 NA 深度学习 NA 实验数据 使用的样本包括铝板上多种损伤特征的实验
929 2024-08-05
Utilizing improved YOLOv8 based on SPD-BRSA-AFPN for ultrasonic phased array non-destructive testing
2024-Aug, Ultrasonics IF:3.8Q1
研究论文 本研究提出了一种基于改进YOLOv8的智能缺陷检测算法,以提高超声相控阵检测中的缺陷识别效率和准确性 引入空间到深度卷积(SPD-Conv)和双层路由与空间注意模块(BRSA),并用渐近特征金字塔网络(AFPN)替换了原有结构,以改进低分辨率图像的检测性能 对高分辨率且良好标注的训练数据的需求较高,这在无损检测中难以获得 提高超声相控阵检测中缺陷检测的准确性和效率 在超声相控阵检测中检测缺陷,如平底孔(FBH)和侧钻孔(SDH) 图像处理 NA 超声相控阵检测 YOLOv8 图像 在模拟数据集和实验数据集上进行了测试,具体样本量未明示
930 2024-08-05
Fingerprint authentication based on deep convolutional descent inversion tomography
2024-Aug, Ultrasonics IF:3.8Q1
研究论文 提出了一种新的基于深度卷积反演层析的指纹认证方法。 结合深度学习和多尺度融合,提高了指纹反演和认证的精准度与速度。 未提及具体的适用范围或其他数据集的测试。 研究新的指纹认证方法以提高识别精度和速度。 指纹及其特征,特别是湿指纹和假细节的识别。 计算机视觉 NA 深快反演层析(DeepFIT)及Mask R-CNN 卷积神经网络(CNN) 图像 NA
931 2024-08-05
Shear wave trajectory detection in ultra-fast M-mode images for liver fibrosis assessment: A deep learning-based line detection approach
2024-Aug, Ultrasonics IF:3.8Q1
研究论文 本文首次尝试使用深度学习方法在波传播图上检测剪切波轨迹以评估肝纤维化。 创新之处在于提出了一种基于Transformer和霍夫变换的端到端框架TEHT,能够从波传播图中直接输出剪切波轨迹的斜率。 由于样本量相对较小且仅限于68名患者,可能影响结果的广泛适用性。 研究目标在于探索深度学习在肝纤维化评估中的应用。 研究对象为68名患者的波传播图。 数字病理学 肝癌 超声弹性成像 Transformer 图像 68份患者的波传播图
932 2024-08-04
Automated early detection of acute retinal necrosis from ultra-widefield color fundus photography using deep learning
2024-Aug-01, Eye and vision (London, England)
研究论文 本研究开发了一种深度学习框架,以自动检测急性视网膜坏死(ARN) 引入了名为DeepDrARN的深度学习模型,能够有效区分ARN和其他类型的葡萄膜炎 本研究仅限于两中心的回顾性研究,可能存在样本偏倚 旨在通过超广角彩色眼底摄影,实现ARN的早期自动检测 使用11,508幅来自1,112名参与者的超广角彩色眼底摄影图像 数字病理学 NA 深度学习 DeepDrARN 图像 11,508幅超广角彩色眼底摄影图像
933 2024-08-05
Assessment of image quality and diagnostic accuracy for cervical spondylosis using T2w-STIR sequence with a deep learning-based reconstruction approach
2024-Aug, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society IF:2.6Q1
研究论文 本研究探讨了通过深度学习重建处理提高颈椎MRI图像质量和诊断准确性。 提出了一种基于深度学习重建的处理方法以进一步提升3.0 T颈椎MRI图像的品质 未能在不同序列的诊断和分级方面发现显著统计差异 旨在通过深度学习技术提升颈椎MRI的图像质量和诊断效果 对71名志愿者的颈椎MRI图像进行评估,比较传统图像和深度学习重建后的图像 医学影像学 NA 深度学习重建(DLR) NA 图像 71个颈椎MRI图像样本
934 2024-08-05
Deciphering the Feature Representation of Deep Neural Networks for High-Performance AI
2024-Aug, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文开发了一种名为对比特征分析(CFA)的计算框架,以探索深度神经网络(DNN)的特征空间并提高人工智能的性能 提出了一种新颖的数据驱动内核构建策略,改善了传统方法的局限性,使得特征数据的分析变得更加可靠 目前的特征提取技术在应对噪声数据和复杂结构时仍存在挑战 研究深度神经网络中的特征提取及其对人工智能性能的影响 主要集中于深度神经网络的特征空间及其分析 机器学习 NA 对比特征分析(CFA) 深度神经网络(DNN) 特征数据 使用多个最先进的网络和多个经过良好注释的数据集
935 2024-08-05
Development and validation of a predictive model for vertebral fracture risk in osteoporosis patients
2024-Aug, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society IF:2.6Q1
研究论文 本研究旨在开发和验证一个针对骨质疏松患者椎体骨折风险的预测模型 通过整合人口统计学、骨密度、CT成像和深度学习放射组学特征,提出了一种新颖的综合预测模型 NA 研究旨在评估骨质疏松患者椎体骨折风险的预测能力 169名确诊为骨质疏松的患者 数字病理学 骨质疏松 深度转移学习(DTL) Cox比例风险模型 CT图像 169名患者(椎体骨折组77名,非骨折组92名)
936 2024-08-04
Visceral and Subcutaneous Abdominal Fat Predict Brain Volume Loss at Midlife in 10,001 Individuals
2024-Aug-01, Aging and disease IF:7.0Q1
研究论文 腹部脂肪与大脑健康日益相关,研究展示了腹部脂肪对大脑容积丧失的预测能力 本研究发现内脏脂肪是预测多个大脑区域容积丧失的可调节因素,且提供了年龄和性别调整后的相关性分析 仅在健康参与者中进行,可能不适用于有其他健康问题的人群,且未考虑其他潜在影响因素 探讨腹部脂肪(内脏和皮下脂肪)对中年人群大脑容积的影响 10,001名健康参与者的腹部脂肪和大脑容积数据 数字病理学 NA 1.5T MRI, 深度学习 NA 图像 10,001名健康参与者
937 2024-08-04
Bayesian-Edge system for classification and segmentation of skin lesions in Internet of Medical Things
2024-Aug, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI) IF:2.0Q3
研究论文 本文介绍了一种结合贝叶斯推断和边缘智能的皮肤病变分割模型 该模型集成了贝叶斯推断和边缘智能以提高皮肤病变分割的准确性和效率 在运行时分析恶性肿瘤仍然面临挑战,视觉相似性可能导致误判 提高皮肤病变的分类和分割精度,从而增强临床决策能力 皮肤病变图像的分割与分类 数字病理学 NA 贝叶斯推断和边缘智能 NA 图像 NA
938 2024-08-04
Prediction of strong coupling in resonant perovskite metasurfaces by deep learning
2024-Aug-01, Optics letters IF:3.1Q2
研究论文 本文提出了一种深度学习策略,用于模拟共振钙钛矿超表面的强耦合现象 提出了一种基于深度学习的全连接神经网络来快速预测共振钙钛矿超表面的传输光谱和耦合现象 尚未说明具体的实验验证或实际应用案例 旨在提高共振超表面的设计效率 研究共振钙钛矿超表面具有强耦合现象的预测 机器学习 NA 深度学习 全连接神经网络 光谱数据 NA
939 2024-08-04
Deep learning-based quantification of total bleeding volume and its association with complications, disability, and death in patients with aneurysmal subarachnoid hemorrhage
2024-Aug-01, Journal of neurosurgery IF:3.5Q1
研究论文 本文研究了动脉瘤性蛛网膜下腔出血(aSAH)患者出血总量与术后并发症、残疾和死亡之间的关系 首次应用自动化深度学习技术定量分析aSAH患者的总出血量,并探讨其与临床结果的关联 研究仅在单一机构进行,样本数据可能不足以代表所有aSAH患者 探索aSAH患者的出血严重程度与术后并发症和长期功能结果之间的关系 2018年至2021年期间在单一机构住院的动脉瘤性蛛网膜下腔出血成人患者 医学影像 动脉瘤性蛛网膜下腔出血 深度学习 自动分割模型 电子健康记录数据 819名患者
940 2024-08-04
Enhanced mutual information neural estimators for optical fiber communication
2024-Aug-01, Optics letters IF:3.1Q2
研究论文 文章提出了一种新的互信息神经估计器用于光纤通信的互信息估计 首次提出增强型互信息神经估计器(E-MINE),通过扩大训练批量大小来提高估计准确性和稳定性 在处理非线性光纤信道的挑战时,仍然受限于未知的信道模型 准确估计光纤通信中的互信息以优化信道容量和性能 光纤通信中的互信息估计 机器学习 NA 深度学习 互信息神经估计器(MINE) NA NA
回到顶部