深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202408-202408] [清除筛选条件]
当前共找到 1079 篇文献,本页显示第 961 - 980 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
961 2024-08-05
Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study
2024-Aug, Annals of nuclear medicine IF:2.5Q2
研究论文 研究结合临床因素、18F-FDG PET强度、体积特征以及深度学习预测器的预后价值 首次在不同 поколения 的 PET 扫描仪上探讨了 18F-FDG PET 基于强度和体积特征与临床变量结合对EGFR突变肺腺癌患者的预后能力 仅回顾性分析217名患者的数据,可能存在选择偏差 评估18F-FDG PET和深度学习对EGFR突变肺腺癌患者的预后价值 217名接受酪氨酸激酶抑制剂的晚期EGFR突变肺腺癌患者 数字病理学 肺癌 18F-FDG PET ResNet-50深度学习模型 影像 217名患者
962 2024-08-05
Who Are the Anatomic Outliers Undergoing Total Knee Arthroplasty? A Computed Tomography-Based Analysis of the Hip-Knee-Ankle Axis Across 1,352 Preoperative Computed Tomographies Using a Deep Learning and Computer Vision-Based Pipeline
2024-Aug, The Journal of arthroplasty IF:3.4Q1
研究论文 本文分析了1352个术前计算机断层扫描的髋-膝-踝轴,探讨全膝关节置换术中的解剖异常。 利用基于深度学习和计算机视觉的管道,首次从大规模数据集中识别解剖异常并分析其影响。 研究主要依赖术前CT扫描数据,可能无法反映手术后解剖变化。 确定全膝关节置换术前身体解剖参数的分布和识别解剖异常。 分析1352个全膝关节置换术前的CT扫描,识别解剖偏离指标。 计算机视觉 NA 深度学习,计算机视觉 分类和分割模型 医学影像 1352个术前CT扫描
963 2024-08-05
Developing a machine learning model for predicting venlafaxine active moiety concentration: a retrospective study using real-world evidence
2024-Aug, International journal of clinical pharmacy IF:2.6Q2
研究论文 本研究开发了一个机器学习模型以预测文拉法辛的活性成分浓度 使用真实世界证据,基于机器学习和深度学习技术开发了文拉法辛浓度预测模型 模型的准确性在不同亚组分析中有所不同,可能受限于样本选择和变量分析方法 开发一个预测文拉法辛浓度的模型,以改善抑郁症患者的治疗效果 接受文拉法辛治疗的患者,包含330个合格患者 机器学习 抑郁症 机器学习技术 eXtreme Gradient Boosting算法 临床数据 330个患者样本
964 2024-08-05
Integrative modeling meets deep learning: Recent advances in modeling protein assemblies
2024-Aug, Current opinion in structural biology IF:6.1Q1
研究论文 本文讨论了基于深度学习的蛋白质组装建模的最新进展 提出了整合性和层级的方法来建模大分子组装 对复杂的组装结构预测仍然需要专业的方法 研究大分子组装建模的新方法和挑战 重点介绍蛋白质-蛋白质相互作用的预测 结构生物学 NA 深度学习 整合模型和层级模型 结构数据 NA
965 2024-08-05
Enhanced choroid plexus segmentation with 3D UX-Net and its association with disease progression in multiple sclerosis
2024-Aug, Multiple sclerosis and related disorders IF:2.9Q2
研究论文 本文开发了一种可靠的深度学习模型用于自动分割脉络丛,并验证了其在多发性硬化症中的临床意义 3D UX-Net模型在脉络丛分割中表现优于传统的3D U-Net,且与临床结果的相关性更高 研究样本主要集中在复发性缓解型多发性硬化症患者,外部测试集可能影响结果的一般性 开发一个用于自动分割脉络丛的深度学习模型,并验证其在多发性硬化症中的临床相关性 216名复发性缓解型多发性硬化症患者和75名健康对象的T1加权MRI数据 数字病理学 多发性硬化症 深度学习(DL) 3D UX-Net MRI图像 共291个样本,包含216名复发性缓解型多发性硬化症患者和75名健康对象
966 2024-08-05
Association of retinal microvascular curve tortuosity and multiple sclerosis: A cross-section analysis from the UK Biobank
2024-Aug, Multiple sclerosis and related disorders IF:2.9Q2
研究论文 本研究探讨了视网膜微血管曲线扭曲与多发性硬化之间的关联 首次量化了视网膜血管曲线扭曲与多发性硬化的关系 可能由于样本偏差或环境因素影响结果 旨在探讨视网膜血管特征与多发性硬化的关系 使用UK Biobank中的参与者数据 数字病理学 多发性硬化 深度学习系统 条件逻辑回归 临床记录和眼底照片 包含多发性硬化患者和健康对照组
967 2024-08-05
An Integral R-Banded Karyotype Analysis System of Bone Marrow Metaphases Based on Deep Learning
2024-Aug-01, Archives of pathology & laboratory medicine IF:3.7Q1
研究论文 本文开发了一个基于深度学习的骨髓中期细胞的整体R带核型分析系统 提出了一种集成的深度学习模型以解决传统核型分析的时间长和劳动强度大的限制 尚未提及具体的局限性 评估内部模型及整个R带骨髓中期细胞核型分析系统的性能 4442组R带正常骨髓中期细胞和核型图 数字病理学 血液肿瘤 深度学习 NA 图像 4442组R带正常骨髓中期细胞和885个测试中期细胞
968 2024-08-05
Deep learning-based flocculation sensor for automatic control of flocculant dose in sludge dewatering processes during wastewater treatment
2024-Aug-15, Water research IF:11.4Q1
研究论文 本文开发了一种基于深度学习的图像传感器,用于在污水处理过程中自动控制絮凝剂的投加剂量 提出了一种新型的絮凝度测量传感器,采用了深度学习技术并比较了多种模型的性能 在进行絮凝测试时仅使用了实验室规模的两种污泥样本,可能未能涵盖所有实际情况 旨在开发一种自动控制絮凝剂投加的传感器以提高污水处理的效率 使用的研究对象包括过量污泥及其与原污水的混合物 数字病理学 NA 深度学习 卷积神经网络,视觉变换器,多层感知器 图像 实验室规模的两种污泥样本
969 2024-08-05
Clinical domain knowledge-derived template improves post hoc AI explanations in pneumothorax classification
2024-Aug, Journal of biomedical informatics IF:4.0Q2
研究论文 提出了一种基于模板的方式来改进肺气肿分类中AI模型的后期解释 通过将肺气肿的临床知识纳入AI模型的解释中,提升了解释的质量 未提及具体限制 提高肺气肿诊断中AI模型解释的清晰度 采用深度学习模型分析肺气肿的医学图像 数字病理学 肺气肿 深度学习 VGG-19 和 ResNet-50 医学图像 两个真实世界数据集 (SIIM-ACR 和 ChestX-Det) 的多个样本
970 2024-08-05
An automated approach for real-time informative frames classification in laryngeal endoscopy using deep learning
2024-Aug, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery IF:1.9Q2
研究论文 本研究展示了深度学习在喉镜检查中自动选择信息丰富框架的可行性 研究展示了一种实时的深度学习模型,该模型能够在喉镜检查中自动选择信息丰富的图像框架 NA 本研究旨在提高喉镜检查中图像选择的自动化和有效性 使用深度学习模型对喉镜图像进行分类 计算机视觉 NA 深度学习 ResNet-50 图像 内部数据集5147张图像和外部测试集646张图像
971 2024-08-05
Knowledge-driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un-supervised learning
2024-Aug, Magnetic resonance in medicine IF:3.0Q2
评论 本文回顾了知识驱动的深度学习在快速MRI中的应用和挑战 介绍了知识驱动的深度学习方法从监督学习到非监督学习的转变,提出了一些显著的解决方案 对不同成像应用场景的深入研究和解决方案可能有限 探讨快速MRI中知识驱动深度学习面临的挑战及其解决方案 MRI图像重建及其与知识驱动方法的结合 数字病理学 NA 深度学习 神经网络 图像 NA
972 2024-08-05
A natural inhibitor of diapophytoene desaturase attenuates methicillin-resistant Staphylococcus aureus (MRSA) pathogenicity and overcomes drug-resistance
2024-Aug, British journal of pharmacology IF:6.8Q1
研究论文 本文探讨了天然抑制剂alnustone对MRSA致病性的抑制作用及其克服耐药性的机制 利用深度学习技术构建了diapophytoene desaturase的三维结构并发现alnustone作为一种有效的抑制剂 对staphyloxanthin生物合成酶的生物结构特征和抑制剂与蛋白质之间的分子机制的理解有限 研究天然抑制剂如何对抗耐甲氧西林金黄色葡萄球菌(MRSA)感染 主要研究对象为耐甲氧西林金黄色葡萄球菌及其相关的生物合成途径 数字病理学 耐甲氧西林金黄色葡萄球菌感染 深度学习,分子建模,位点定向突变,生物层干涉法(BLI) NA 转录组数据 小鼠模型中的MRSA菌株
973 2024-08-07
Harnessing the deep learning power of foundation models in single-cell omics
2024-Aug, Nature reviews. Molecular cell biology
NA NA NA NA NA NA NA NA NA NA NA NA
974 2024-08-05
A Brazilian native bee (Tetragonisca angustula) dataset for computer vision
2024-Aug, Data in brief IF:1.0Q3
研究论文 文章介绍了一个用于计算机视觉的巴西本土蜜蜂数据集 提供了用于蜜蜂追踪的多样化视频数据及其标签和元数据 研究中未提及数据集的规模或照片与视频的处理方法 证明该数据集在计算机视觉任务中的潜力 多个蜜蜂群体的视频记录 计算机视觉 NA NA 深度学习模型 视频 多个蜜蜂群体的视频
975 2024-08-05
SeasVeg: An image dataset of Bangladeshi seasonal vegetables
2024-Aug, Data in brief IF:1.0Q3
研究论文 本研究介绍了一个名为'SeasVeg'的数据集,包含孟加拉国季节性蔬菜的图像 数据集的多功能性,不仅用于农业科学的机器学习和深度学习,还可用于儿童学习蔬菜识别 研究未提及数据集使用的具体上下文或限制条件 探索季节性蔬菜对营养和商业的重要性,并推动农业科学的发展 包括十种季节性蔬菜的图像数据集 机器学习 NA 深度学习 CNN 图像 4500幅图像(1500幅原始和3000幅增强)
976 2024-08-05
An instance segmentation dataset of cabbages over the whole growing season for UAV imagery
2024-Aug, Data in brief IF:1.0Q3
研究论文 本文介绍了一种针对整个生长季节的白菜实例分割数据集,适用于无人机图像 提供了标注的白菜图像数据集,以便通过深度学习模型进行白菜识别 目前白菜的训练数据集仍然有限 创建用于无人机影像的白菜识别训练数据集 白菜图像和其标注 机器学习 NA 深度学习 NA 图像 458张图像,17,621个标注的白菜
977 2024-08-05
Diagnostic support in pediatric craniopharyngioma using deep learning
2024-Aug, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
研究论文 本文研究了儿童颅咽管瘤患者,旨在开发用于放射学辅助分类的卷积深度学习算法 首次在本机构开展此类研究,利用可解释的人工智能和深度学习模型实现放射学诊断支持 NA 开发深度学习算法用于儿童颅咽管瘤的诊断支持 226名智利儿童患者的磁共振影像 计算机视觉 颅咽管瘤 深度学习 卷积神经网络 图像 226名患者(68名健康对照,58名颅咽管瘤患者,100名其他颅内肿瘤患者)
978 2024-08-05
Experience of Implementing Deep Learning-Based Automatic Contouring in Breast Radiation Therapy Planning: Insights From Over 2000 Cases
2024-Aug-01, International journal of radiation oncology, biology, physics
研究论文 本研究评估了自动轮廓系统在乳腺放射治疗中的影响和临床实用性 本研究展示了自动轮廓系统在临床实际应用中的表现,并强调了自动化设置的必要性和潜在的自动化偏差风险 在肺部的分割准确性较差,且未能明确提及如何处理这一问题 本研究的目的是评估自动轮廓系统在乳腺放射治疗中的临床效用 研究对象为2428名接受辅助乳腺放射治疗的患者 数字病理学 乳腺癌 深度学习 NA 轮廓数据 2428名患者
979 2024-08-05
Effect of fully automatic classification model from different tube voltage images on bone density screening: A self-controlled study
2024-Aug, European journal of radiology IF:3.2Q1
研究论文 本研究旨在开发结合深度学习和放射组学的骨状态预测模型,并评估管电压对放射组学特征的可重复性和模型预测效能的影响 创新地将深度学习与放射组学相结合,区分正常和异常骨密度,并分析管电压变动对模型的诊断效果的影响 放射组学模型在不同管电压下的适用性受到限制,无法普遍应用于管电压不同的图像 研究管电压对骨密度筛查模型的影响 1508名接受标准剂量和低剂量胸部CT扫描的患者 数字病理学 骨质疏松症 低剂量和标准剂量胸部计算机断层扫描 (LDCT 和 SDCT) 自动分割模型 医学图像 1508名患者
980 2024-08-05
Semantic contrast with uncertainty-aware pseudo label for lumbar semi-supervised classification
2024-Aug, Computers in biology and medicine IF:7.0Q1
研究论文 该文章提出了一种新的方法SeCoFixMatch,将语义对比和不确定性感知伪标签无缝集成到半监督学习中 引入了语义对比约束和不确定性感知伪标签生成方法,以提高伪标签的质量和模型的预测准确性 未提及具体的局限性 提高脊柱疾病(如腰椎间盘突出)MRI图像的半监督分类性能 腰椎间盘突出(LDH)MRI图像 机器学习 腰椎间盘突出 KL损失优化 NA 图像 仅使用了40个标签进行训练
回到顶部