本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
961 | 2024-08-04 |
Three-dimensional heavily T2-weighted FLAIR in the detection of blood-labyrinthine barrier leakage in patients with sudden sensorineural hearing loss: comparison with T1 sequences and application of deep learning-based reconstruction
2024-Aug, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10580-9
PMID:38231393
|
研究论文 | 本文比较了在突发性神经性听力丧失患者中检测血迷路屏障泄漏的三维重T2加权FLAIR与其他序列的效果。 | 通过深度学习重建提高了三维重T2加权FLAIR在检测外淋巴增强方面的敏感性。 | 样本量相对较小,仅限于单侧突发性神经性听力丧失患者。 | 研究不同MRI序列在检测血迷路屏障泄漏中的有效性。 | 54名接受耳部MRI的单侧突发性神经性听力丧失患者。 | 数字病理学 | 突发性神经性听力丧失 | MRI | 深度学习重建 | 图像 | 54名患者 |
962 | 2024-08-04 |
Anti-HER2 therapy response assessment for guiding treatment (de-)escalation in early HER2-positive breast cancer using a novel deep learning radiomics model
2024-Aug, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10609-7
PMID:38329503
|
研究论文 | 本文提出了一种基于深度学习的放射组学模型DeepTEPP,用于早期HER2阳性乳腺癌的抗HER2治疗反应评估 | 该研究开发了一种新型的基于MRI的深度学习模型DeepTEPP,能够非侵入性地预测抗HER2的有效性并指导抗HER2治疗策略的调整 | 需进行前瞻性验证以确认DeepTEPP的有效性和适用性 | 研究目的是为了精确风险分层,指导抗HER2策略的(减)加强 | 研究对象为726例接受不同抗HER2治疗的HER2阳性乳腺癌患者 | 计算机视觉 | 乳腺癌 | MRI | 深度学习模型 (DeepTEPP) | 影像 | 726例HER2阳性乳腺癌患者 |
963 | 2024-08-04 |
Deep learning-based white matter lesion volume on CT is associated with outcome after acute ischemic stroke
2024-Aug, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10584-z
PMID:38285103
|
研究论文 | 本研究探讨了基于深度学习的白质病灶体积在急性缺血性中风患者中的应用 | 提出使用深度学习模型测量白质病灶体积,作为评估静脉溶栓效果和风险因素 | 该研究为事后分析,可能存在偏倚,且结果需要进一步验证 | 开发和验证深度学习模型以测量CT上白质病灶的体积,并评估其作为静脉溶栓反应修饰因子的潜力 | 急性缺血性中风患者,特别是在静脉溶栓和血管内治疗过程中 | 数字病理学 | 急性缺血性中风 | 深度学习 | NA | 影像 | 516名患者 |
964 | 2024-08-04 |
Diagnostic accuracy of an artificial intelligence algorithm versus radiologists for fracture detection on cervical spine CT
2024-Aug, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10559-6
PMID:38206401
|
研究论文 | 本文比较了人工智能算法在颈椎CT中检测骨折的诊断准确性与放射科医师的表现 | 该研究展示了人工智能在发现放射科医师未发现的颈椎骨折方面的潜力 | 人工智能在检测需要稳定治疗的骨折方面的敏感性低于放射科医师,并且漏检率较高 | 评估人工智能在颈椎骨折检测中的诊断准确性 | 对2007年至2014年间的成千上万名患者的CT扫描进行分析 | 医学影像处理 | NA | 深度学习 | NA | CT影像 | 2368个扫描 |
965 | 2024-08-05 |
Tennis player actions dataset for human pose estimation
2024-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.110665
PMID:39071962
|
研究论文 | 本文描述了一个用于人类姿态估计的网球动作数据集 | 构建了一个新的数据集,专注于网球运动中的人类姿态估计,包括具体的网球动作 | 数据集仅限于从朋友的网球视频中提取,可能存在样本多样性不足的问题 | 为网球训练和人类姿态估计提供一个新的数据集 | 研究对象是网球运动员的姿态动作 | 计算机视觉 | NA | 深度学习 | OpenPose | 视频 | NA |
966 | 2024-08-05 |
A dataset for multimodal music information retrieval of Sotho-Tswana musical videos
2024-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.110672
PMID:39071970
|
研究论文 | 介绍了一个针对Sotho-Tswana音乐视频的多模态音乐信息检索数据集 | 首次建立针对低资源语言Sotho-Tswana的多模态音乐信息检索数据集 | 缺乏广泛的多模态数据集,可能无法涵盖所有音乐信息检索应用 | 促进多模态音乐信息检索应用的发展 | Sotho-Tswana文化的音乐视频数据集 | 机器学习 | NA | Python程序处理和特征提取 | NA | 视频、文本、音频 | 涉及多个Sotho-Tswana音乐视频 |
967 | 2024-08-05 |
Early warning of hepatocellular carcinoma in cirrhotic patients by three-phase CT-based deep learning radiomics model: a retrospective, multicentre, cohort study
2024-Aug, EClinicalMedicine
IF:9.6Q1
DOI:10.1016/j.eclinm.2024.102718
PMID:39070173
|
研究论文 | 本研究开发并验证了一个基于三期CT的深度学习放射组学模型,用于在肝硬化患者中早期警告肝细胞癌(HCC)。 | 该研究提出了一个新型的ALARM模型,结合了深度学习放射组学与临床变量,能够有效预测大多数HCC病例的短期发展。 | 本研究的限制包括样本主要来自特定的11个中心,可能影响模型的外部适应性。 | 研究的目的是为了开发和验证一个早期警告HCC的模型,以改善肝硬化患者的诊断结果。 | 研究对象为1858名肝硬化患者,收集了他们的三期CT影像及实验室结果。 | 数字病理学 | 肝癌 | 深度学习放射组学 | ALARM模型 | 影像 | 1858名肝硬化患者 |
968 | 2024-08-05 |
Artificial intelligence for small molecule anticancer drug discovery
2024-Aug, Expert opinion on drug discovery
IF:6.0Q1
DOI:10.1080/17460441.2024.2367014
PMID:39074493
|
综述 | 本文探讨了人工智能在小分子抗癌药物发现中的应用和挑战。 | 强调了AI驱动药物发现的重要里程碑以及未来研究的启示。 | 数据质量、模型可解释性和技术限制仍然是面临的挑战。 | 研究人工智能在小分子癌症药物发现中的应用及其潜在创新。 | 综述过去和当前AI在药物发现中的应用与挑战。 | 药物发现 | 癌症 | 机器学习,深度学习 | NA | 基因组数据、蛋白质组数据、影像数据 | NA |
969 | 2024-08-05 |
Quantitative structure-retention relationships for pyridinium-based ionic liquids used as gas chromatographic stationary phases: convenient software and assessment of reliability of the results
2024-Aug-16, Journal of chromatography. A
DOI:10.1016/j.chroma.2024.465144
PMID:38996513
|
研究论文 | 本研究针对用于气相色谱的基于吡啶的离子液体的定量结构-保留关系进行研究 | 首次提供了足够大的结构多样化化合物的数据集以支持离子液体基固定相的QSRR研究 | 研究中提到的数据集小的扰动可能会影响结果的可靠性,需谨慎处理 | 旨在填补关于基于离子液体的固定相的QSRR研究的空白 | 研究对象为三种具有取代吡啶阳离子的离子液体 | 数字病理学 | NA | 气相色谱法 | 深度学习模型和线性模型 | 化合物数据 | 123-158种化合物 |
970 | 2024-08-05 |
Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study
2024-Aug, Annals of nuclear medicine
IF:2.5Q2
DOI:10.1007/s12149-024-01936-2
PMID:38704786
|
研究论文 | 研究结合临床因素、18F-FDG PET强度、体积特征以及深度学习预测器的预后价值 | 首次在不同 поколения 的 PET 扫描仪上探讨了 18F-FDG PET 基于强度和体积特征与临床变量结合对EGFR突变肺腺癌患者的预后能力 | 仅回顾性分析217名患者的数据,可能存在选择偏差 | 评估18F-FDG PET和深度学习对EGFR突变肺腺癌患者的预后价值 | 217名接受酪氨酸激酶抑制剂的晚期EGFR突变肺腺癌患者 | 数字病理学 | 肺癌 | 18F-FDG PET | ResNet-50深度学习模型 | 影像 | 217名患者 |
971 | 2024-08-05 |
Who Are the Anatomic Outliers Undergoing Total Knee Arthroplasty? A Computed Tomography-Based Analysis of the Hip-Knee-Ankle Axis Across 1,352 Preoperative Computed Tomographies Using a Deep Learning and Computer Vision-Based Pipeline
2024-Aug, The Journal of arthroplasty
IF:3.4Q1
DOI:10.1016/j.arth.2024.03.053
PMID:38548237
|
研究论文 | 本文分析了1352个术前计算机断层扫描的髋-膝-踝轴,探讨全膝关节置换术中的解剖异常。 | 利用基于深度学习和计算机视觉的管道,首次从大规模数据集中识别解剖异常并分析其影响。 | 研究主要依赖术前CT扫描数据,可能无法反映手术后解剖变化。 | 确定全膝关节置换术前身体解剖参数的分布和识别解剖异常。 | 分析1352个全膝关节置换术前的CT扫描,识别解剖偏离指标。 | 计算机视觉 | NA | 深度学习,计算机视觉 | 分类和分割模型 | 医学影像 | 1352个术前CT扫描 |
972 | 2024-08-05 |
Developing a machine learning model for predicting venlafaxine active moiety concentration: a retrospective study using real-world evidence
2024-Aug, International journal of clinical pharmacy
IF:2.6Q2
DOI:10.1007/s11096-024-01724-y
PMID:38753076
|
研究论文 | 本研究开发了一个机器学习模型以预测文拉法辛的活性成分浓度 | 使用真实世界证据,基于机器学习和深度学习技术开发了文拉法辛浓度预测模型 | 模型的准确性在不同亚组分析中有所不同,可能受限于样本选择和变量分析方法 | 开发一个预测文拉法辛浓度的模型,以改善抑郁症患者的治疗效果 | 接受文拉法辛治疗的患者,包含330个合格患者 | 机器学习 | 抑郁症 | 机器学习技术 | eXtreme Gradient Boosting算法 | 临床数据 | 330个患者样本 |
973 | 2024-08-05 |
Integrative modeling meets deep learning: Recent advances in modeling protein assemblies
2024-Aug, Current opinion in structural biology
IF:6.1Q1
DOI:10.1016/j.sbi.2024.102841
PMID:38795564
|
研究论文 | 本文讨论了基于深度学习的蛋白质组装建模的最新进展 | 提出了整合性和层级的方法来建模大分子组装 | 对复杂的组装结构预测仍然需要专业的方法 | 研究大分子组装建模的新方法和挑战 | 重点介绍蛋白质-蛋白质相互作用的预测 | 结构生物学 | NA | 深度学习 | 整合模型和层级模型 | 结构数据 | NA |
974 | 2024-08-05 |
Enhanced choroid plexus segmentation with 3D UX-Net and its association with disease progression in multiple sclerosis
2024-Aug, Multiple sclerosis and related disorders
IF:2.9Q2
DOI:10.1016/j.msard.2024.105750
PMID:38986172
|
研究论文 | 本文开发了一种可靠的深度学习模型用于自动分割脉络丛,并验证了其在多发性硬化症中的临床意义 | 3D UX-Net模型在脉络丛分割中表现优于传统的3D U-Net,且与临床结果的相关性更高 | 研究样本主要集中在复发性缓解型多发性硬化症患者,外部测试集可能影响结果的一般性 | 开发一个用于自动分割脉络丛的深度学习模型,并验证其在多发性硬化症中的临床相关性 | 216名复发性缓解型多发性硬化症患者和75名健康对象的T1加权MRI数据 | 数字病理学 | 多发性硬化症 | 深度学习(DL) | 3D UX-Net | MRI图像 | 共291个样本,包含216名复发性缓解型多发性硬化症患者和75名健康对象 |
975 | 2024-08-05 |
Association of retinal microvascular curve tortuosity and multiple sclerosis: A cross-section analysis from the UK Biobank
2024-Aug, Multiple sclerosis and related disorders
IF:2.9Q2
DOI:10.1016/j.msard.2024.105753
PMID:38996710
|
研究论文 | 本研究探讨了视网膜微血管曲线扭曲与多发性硬化之间的关联 | 首次量化了视网膜血管曲线扭曲与多发性硬化的关系 | 可能由于样本偏差或环境因素影响结果 | 旨在探讨视网膜血管特征与多发性硬化的关系 | 使用UK Biobank中的参与者数据 | 数字病理学 | 多发性硬化 | 深度学习系统 | 条件逻辑回归 | 临床记录和眼底照片 | 包含多发性硬化患者和健康对照组 |
976 | 2024-08-05 |
An Integral R-Banded Karyotype Analysis System of Bone Marrow Metaphases Based on Deep Learning
2024-Aug-01, Archives of pathology & laboratory medicine
IF:3.7Q1
DOI:10.5858/arpa.2022-0533-OA
PMID:37931220
|
研究论文 | 本文开发了一个基于深度学习的骨髓中期细胞的整体R带核型分析系统 | 提出了一种集成的深度学习模型以解决传统核型分析的时间长和劳动强度大的限制 | 尚未提及具体的局限性 | 评估内部模型及整个R带骨髓中期细胞核型分析系统的性能 | 4442组R带正常骨髓中期细胞和核型图 | 数字病理学 | 血液肿瘤 | 深度学习 | NA | 图像 | 4442组R带正常骨髓中期细胞和885个测试中期细胞 |
977 | 2024-08-05 |
Deep learning-based flocculation sensor for automatic control of flocculant dose in sludge dewatering processes during wastewater treatment
2024-Aug-15, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2024.121890
PMID:38870864
|
研究论文 | 本文开发了一种基于深度学习的图像传感器,用于在污水处理过程中自动控制絮凝剂的投加剂量 | 提出了一种新型的絮凝度测量传感器,采用了深度学习技术并比较了多种模型的性能 | 在进行絮凝测试时仅使用了实验室规模的两种污泥样本,可能未能涵盖所有实际情况 | 旨在开发一种自动控制絮凝剂投加的传感器以提高污水处理的效率 | 使用的研究对象包括过量污泥及其与原污水的混合物 | 数字病理学 | NA | 深度学习 | 卷积神经网络,视觉变换器,多层感知器 | 图像 | 实验室规模的两种污泥样本 |
978 | 2024-08-05 |
Clinical domain knowledge-derived template improves post hoc AI explanations in pneumothorax classification
2024-Aug, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2024.104673
PMID:38862083
|
研究论文 | 提出了一种基于模板的方式来改进肺气肿分类中AI模型的后期解释 | 通过将肺气肿的临床知识纳入AI模型的解释中,提升了解释的质量 | 未提及具体限制 | 提高肺气肿诊断中AI模型解释的清晰度 | 采用深度学习模型分析肺气肿的医学图像 | 数字病理学 | 肺气肿 | 深度学习 | VGG-19 和 ResNet-50 | 医学图像 | 两个真实世界数据集 (SIIM-ACR 和 ChestX-Det) 的多个样本 |
979 | 2024-08-05 |
An automated approach for real-time informative frames classification in laryngeal endoscopy using deep learning
2024-Aug, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
IF:1.9Q2
DOI:10.1007/s00405-024-08676-z
PMID:38698163
|
研究论文 | 本研究展示了深度学习在喉镜检查中自动选择信息丰富框架的可行性 | 研究展示了一种实时的深度学习模型,该模型能够在喉镜检查中自动选择信息丰富的图像框架 | NA | 本研究旨在提高喉镜检查中图像选择的自动化和有效性 | 使用深度学习模型对喉镜图像进行分类 | 计算机视觉 | NA | 深度学习 | ResNet-50 | 图像 | 内部数据集5147张图像和外部测试集646张图像 |
980 | 2024-08-05 |
Knowledge-driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un-supervised learning
2024-Aug, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.30105
PMID:38624162
|
评论 | 本文回顾了知识驱动的深度学习在快速MRI中的应用和挑战 | 介绍了知识驱动的深度学习方法从监督学习到非监督学习的转变,提出了一些显著的解决方案 | 对不同成像应用场景的深入研究和解决方案可能有限 | 探讨快速MRI中知识驱动深度学习面临的挑战及其解决方案 | MRI图像重建及其与知识驱动方法的结合 | 数字病理学 | NA | 深度学习 | 神经网络 | 图像 | NA |