本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 101 | 2025-10-06 |
Fast intraoperative detection of primary CNS lymphoma and differentiation from common CNS tumors using stimulated Raman histology and deep learning
2024-Aug-26, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.08.25.24312509
PMID:39252932
|
研究论文 | 本研究结合受激拉曼组织成像和深度学习技术,开发了快速术中检测原发性中枢神经系统淋巴瘤并与其他脑肿瘤区分的诊断系统 | 首次将便携式拉曼散射显微镜与深度学习相结合,在3分钟内生成虚拟H&E样图像,实现术中快速准确诊断 | 研究样本来自四个国际医疗中心,但需要更多中心验证通用性 | 开发快速术中诊断方法,准确区分原发性中枢神经系统淋巴瘤与其他中枢神经系统病变 | 中枢神经系统肿瘤和非肿瘤病变组织样本 | 数字病理学 | 中枢神经系统淋巴瘤 | 受激拉曼组织成像 | 深度学习 | 图像 | 54,000个SRH图像块,来自多个国际医疗中心的手术切除和立体定向活检样本 | NA | 自监督学习策略 | 平衡准确率 | NA |
| 102 | 2025-10-06 |
Fully Automatic Quantitative Measurement of Equilibrium Radionuclide Angiocardiography Using a Convolutional Neural Network
2024-Aug-01, Clinical nuclear medicine
IF:9.6Q1
DOI:10.1097/RLU.0000000000005275
PMID:38967505
|
研究论文 | 本研究开发了一种基于卷积神经网络的平衡放射性核素心血管造影全自动定量测量方法 | 首次使用二维U-Net卷积神经网络自动生成左心室感兴趣区域,用于测量左心室射血分数 | 研究仅基于单一机构的回顾性数据,未进行外部验证 | 开发深度学习模型来自动化测量左心室射血分数 | 平衡放射性核素心血管造影数据集 | 医学影像分析 | 心血管疾病 | 平衡放射性核素心血管造影 | CNN | 医学影像 | 41,462次扫描(来自19,309名患者) | NA | U-Net | Lin一致性相关系数, Bland-Altman分析 | NA |
| 103 | 2025-10-06 |
Focal liver lesion diagnosis with deep learning and multistage CT imaging
2024-Aug-15, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-51260-6
PMID:39147767
|
研究论文 | 开发基于深度学习和多期相CT成像的肝脏局灶性病变自动诊断系统LiLNet | 首次构建基于多中心数据的肝脏病变深度学习诊断网络,并在外部中心和临床环境中验证其性能 | 未提及模型在罕见病变类型上的表现及计算效率分析 | 开发自动化的肝脏病变诊断系统以辅助临床决策 | 肝脏局灶性病变(包括HCC、ICC、MET、FNH、HEM和CYST) | 计算机视觉 | 肝脏疾病 | 多期相增强CT成像 | 深度学习 | CT医学影像 | 来自6个数据中心的4039名患者 | NA | LiLNet | 准确率, AUC | NA |
| 104 | 2025-10-06 |
The analysis of teaching quality evaluation for the college sports dance by convolutional neural network model and deep learning
2024-Aug-30, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e36067
PMID:39224395
|
研究论文 | 本研究使用一维卷积神经网络模型和深度学习方法对高校体育舞蹈教学质量进行综合评估 | 创新地将深度学习技术应用于体育舞蹈教学质量评估,解决了传统评估方法主观性强和标准不一致的问题 | NA | 通过构建教学质量评估模型,定量评估高校体育舞蹈教育质量 | 高校体育舞蹈课程教学质量 | 机器学习 | NA | 深度学习 | CNN | 一维评估数据 | NA | NA | 一维CNN | 均方误差(MSE), R值 | NA |
| 105 | 2025-06-15 |
Discrete Representation Learning for Multivariate Time Series
2024-Aug, Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)
|
research paper | 本文提出了一种基于高斯过程的多元时间序列离散表示学习方法 | 使用Gumbel-softmax重参数化技巧解决离散潜在变量在深度学习模型中的不可微问题,实现联合聚类和嵌入 | NA | 开发多元时间序列的离散表示学习方法以提高可解释性 | 多元时间序列数据 | machine learning | NA | Gumbel-softmax reparameterization | Gaussian processes | multivariate time series | 合成数据和真实fMRI数据 | NA | NA | NA | NA |
| 106 | 2025-10-06 |
Active Learning Pipeline to Identify Candidate Terms for a CDSS Ontology
2024-Aug-22, Studies in health technology and informatics
DOI:10.3233/SHTI240660
PMID:39176629
|
研究论文 | 提出一种主动学习流程来自动识别临床决策支持系统本体中的候选术语 | 采用主动学习方法从文献中自动识别候选术语,结合人工验证作为深度学习模型训练的一部分 | 仅展示初步结果,需要后续人工验证和长期维护 | 开发自动识别临床决策支持系统本体候选术语的方法 | 生物医学出版物中的术语 | 自然语言处理 | NA | 主动学习,深度学习 | NA | 文本 | NA | NA | NA | NA | NA |
| 107 | 2025-10-06 |
[Automatic segmentation of dental cone-beam computed tomography scans using a deep learning framework]
2024-08-11, Orvosi hetilap
IF:0.8Q3
DOI:10.1556/650.2024.33098
PMID:39127997
|
研究论文 | 本研究开发了一种基于深度学习的自动分割方法,用于牙科锥形束CT扫描的三维重建 | 采用SegResNet架构在MONAI框架下开发深度学习模型,实现了对临床CBCT图像的自动准确分割 | 研究样本量相对有限,仅包含70名部分缺牙患者的CBCT图像 | 开发并评估基于深度学习的CBCT图像自动分割模型 | 牙科锥形束CT扫描图像 | 计算机视觉 | 牙周疾病 | 锥形束CT成像 | 深度学习 | 医学影像 | 70名部分缺牙患者的CBCT图像,其中15例用于验证 | MONAI | SegResNet | 交并比, Dice相似系数, Hausdorff距离 | NA |
| 108 | 2025-10-06 |
Multi-scale self-attention approach for analysing motor imagery signals in brain-computer interfaces
2024-08, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2024.110182
PMID:38795979
|
研究论文 | 提出一种基于多尺度时空自注意力网络的运动想象脑电信号四分类方法 | 采用空间自注意力机制筛选有效通道,结合多尺度时序卷积网络提取时域特征 | NA | 提高运动想象脑电信号的分类准确率 | 运动想象脑电信号(左手、右手、脚部、舌头/休息四类) | 脑机接口 | NA | 脑电图 | 自注意力网络, 时序卷积网络 | 脑电信号 | BCI Competition IV-2b数据集和HGD数据集的IV-2a、IV-2b数据集 | NA | 多尺度时空自注意力网络 | 准确率 | NA |
| 109 | 2025-10-06 |
Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis
2024-Aug-27, bioRxiv : the preprint server for biology
DOI:10.1101/2024.08.27.609971
PMID:39253514
|
研究论文 | 本研究通过构建斑马鱼胚胎发育的单细胞多组学图谱,揭示了脊椎动物胚胎发生的基因调控逻辑 | 发现了Nanog在启动中内胚层基因增强子可及性的新功能,提出了'即时分化'新概念,揭示了由母源沉积调控因子驱动的浅层调控网络 | 研究主要集中于斑马鱼早期胚胎发育阶段,未验证其他脊椎动物模型的普适性 | 系统解析脊椎动物胚胎发生过程中细胞类型多样化的基因调控逻辑 | 斑马鱼早期胚胎发育过程 | 计算生物学 | NA | 单细胞多组学测序(RNA表达和染色质可及性) | 深度学习模型 | DNA序列数据、RNA表达数据、染色质可及性数据 | 斑马鱼早期胚胎发育阶段的单细胞样本 | NA | NA | NA | NA |
| 110 | 2025-06-06 |
DEEP LEARNING FOR AUTOMATIC PREDICTION OF EARLY ACTIVATION OF TREATMENT-NAIVE NONEXUDATIVE MACULAR NEOVASCULARIZATIONS IN AGE-RELATED MACULAR DEGENERATION
2024-08-01, Retina (Philadelphia, Pa.)
DOI:10.1097/IAE.0000000000004106
PMID:38489765
|
research paper | 本研究开发了一种基于光学相干断层扫描(OCT)和OCT血管成像(OCTA)的深度学习分类器,用于预测年龄相关性黄斑变性患者中非渗出性黄斑新生血管的早期渗出风险 | 首次结合OCT和OCTA图像分析,使用多种CNN模型(ResNet-101、Inception-ResNet-v2和DenseNet-201)进行预测,并通过多数投票和软投票技术提升性能 | 样本量相对较小(89例患者),且为回顾性研究 | 开发AI工具预测非渗出性黄斑新生血管的早期渗出风险 | 年龄相关性黄斑变性患者的非渗出性黄斑新生血管 | digital pathology | age-related macular degeneration | OCT, OCTA | CNN (ResNet-101, Inception-ResNet-v2, DenseNet-201) | image | 89例患者(35例渗出组,54例非渗出组) | NA | NA | NA | NA |
| 111 | 2025-05-31 |
AlphaFold2 Reveals Structural Patterns of Seasonal Haplotype Diversification in SARS-CoV-2 Nucleocapsid Protein Variants
2024-08-25, Viruses
DOI:10.3390/v16091358
PMID:39339835
|
研究论文 | 利用AlphaFold2揭示SARS-CoV-2核衣壳蛋白变体的季节性单倍型多样化结构模式 | 首次将AlphaFold2应用于SARS-CoV-2核衣壳蛋白变体的结构模式分析,揭示了内在无序区域在病毒进化中的重要性 | 研究依赖于计算模型预测的蛋白质结构,而非实验验证的实际结构 | 探究SARS-CoV-2变体的起源和进化机制 | SARS-CoV-2核衣壳蛋白(N蛋白)的22种单倍型 | 计算生物学 | COVID-19 | AlphaFold2, 从头计算方法, 数据挖掘 | AlphaFold2 | 蛋白质序列和结构数据 | 22种单倍型(来自GISAID数据库截至2023年7月23日的数据) | NA | NA | NA | NA |
| 112 | 2025-05-31 |
Accurate prediction of protein function using statistics-informed graph networks
2024-Aug-04, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-50955-0
PMID:39097570
|
研究论文 | 提出了一种利用统计信息图网络仅从蛋白质序列预测蛋白质功能的方法 | 该方法无需结构信息即可预测蛋白质功能,并通过进化特征量化评估执行特定功能的残基重要性 | NA | 预测蛋白质功能以支持医学、生物技术和药物开发领域的研究 | 蛋白质序列 | 生物信息学 | NA | 统计信息图网络 | 图网络 | 序列数据 | 超过2亿个未表征的蛋白质 | NA | NA | NA | NA |
| 113 | 2025-05-31 |
Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction
2024-Aug, Nature genetics
IF:31.7Q1
DOI:10.1038/s41588-024-01831-6
PMID:38977853
|
research paper | 介绍了一种名为REGLE的无监督深度学习模型,用于发现高维临床数据(HDCD)与遗传变异之间的关联 | REGLE利用变分自编码器计算HDCD的非线性解缠结嵌入,这些嵌入作为全基因组关联研究(GWAS)的输入,能够发现现有专家定义特征未捕获的特征,并在标记数据极少的数据集中构建准确的疾病特异性多基因风险评分(PRSs) | NA | 改进高维临床数据的遗传发现和疾病预测 | 高维临床数据(HDCD) | machine learning | respiratory and circulatory diseases | variational autoencoders, GWAS | variational autoencoders | clinical data | biobank-scale datasets | NA | NA | NA | NA |
| 114 | 2025-10-07 |
Predictive models and applicability of artificial intelligence-based approaches in drug allergy
2024-Aug-01, Current opinion in allergy and clinical immunology
IF:3.0Q3
DOI:10.1097/ACI.0000000000001002
PMID:38814733
|
综述 | 本文综述了人工智能方法在药物过敏预测模型中的应用潜力与适用性 | 系统总结了人工智能(包括机器学习和深度学习)在药物过敏诊断和预测中的新兴应用 | 现有药物过敏预测模型数量有限,且多采用传统逻辑回归方法 | 评估预测模型和人工智能方法在药物过敏诊断中的临床应用价值 | 药物过敏患者 | 机器学习 | 药物过敏 | NA | 机器学习, 深度学习, 人工神经网络 | 临床数据 | NA | NA | NA | NA | NA |
| 115 | 2025-10-07 |
Foundation model of neural activity predicts response to new stimulus types and anatomy
2024-Aug-31, bioRxiv : the preprint server for biology
DOI:10.1101/2023.03.21.533548
PMID:36993435
|
研究论文 | 通过训练神经活动基础模型,准确预测小鼠对新视觉刺激的神经响应并推断神经元解剖特征 | 首次将基础模型范式应用于神经科学,实现了跨小鼠个体、跨刺激类型和跨任务(从神经活动预测到解剖特征预测)的强泛化能力 | 模型训练依赖于大规模神经活动数据采集,目前仅针对视觉皮层进行了验证 | 构建能够泛化到新刺激类型和预测解剖特征的大脑基础模型 | 小鼠视觉皮层神经元活动 | 计算神经科学 | NA | 神经活动记录,功能连接组学 | 基础模型 | 神经活动数据,自然视频刺激,解剖数据 | 多只小鼠的大规模神经活动记录 | NA | NA | 预测准确率 | NA |
| 116 | 2025-10-07 |
Fragment-Fusion Transformer: Deep Learning-Based Discretization Method for Continuous Single-Cell Raman Spectral Analysis
2024-08-23, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c00149
PMID:38934798
|
研究论文 | 提出一种基于Transformer的片段融合模型,用于连续单细胞拉曼光谱数据的离散化分析 | 将连续光谱基于内在特征进行离散化分段,结合片段内特征提取和片段间特征融合,通过金字塔结构增强模型感受野 | NA | 解决连续拉曼光谱数据缺乏离散化而限制深度学习算法应用的问题 | 单细胞拉曼光谱数据 | 机器学习 | NA | 拉曼光谱 | Transformer | 光谱数据 | NA | NA | Fragment-Fusion Transformer, 金字塔结构 | 准确率, 信息增益, 信息熵 | NA |
| 117 | 2025-10-07 |
Strain-Temperature Dual Sensor Based on Deep Learning Strategy for Human-Computer Interaction Systems
2024-08-23, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c01202
PMID:39068608
|
研究论文 | 本研究开发了一种基于热电流效应的热电水凝胶双传感器,结合深度学习策略实现人机交互系统的应变-温度双重感知 | 利用霍夫迈斯特效应和热电电流效应制备具有高韧性(800 kPa拉伸强度)和高塞贝克系数(2.3 mV/K)的三重网络PVA/PAA/羧甲基纤维素水凝胶 | NA | 开发用于人机交互系统的应变-温度双功能传感器 | 热电水凝胶传感器及其在机器人手控制中的应用 | 人机交互 | NA | 霍夫迈斯特效应、热电电流效应 | 深度学习 | 传感器数据 | NA | NA | NA | 识别准确率(95.30%) | NA |
| 118 | 2025-10-07 |
Deep-Learning-Guided Electrochemical Impedance Spectroscopy for Calibration-Free Pharmaceutical Moisture Content Monitoring
2024-08-23, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c01180
PMID:39096505
|
研究论文 | 本研究开发了一种基于深度学习和电化学阻抗谱的无校准药物水分含量监测方法 | 首次将深度学习技术与电化学阻抗谱结合,实现无需校准的药物水分含量快速准确检测 | NA | 开发快速准确的无校准药物水分含量监测技术 | 药物粉末样品 | 机器学习 | NA | 电化学阻抗谱 | 1DCNN | 光谱数据 | NA | NA | 一维卷积神经网络 | 平均误差 | NA |
| 119 | 2025-10-07 |
Deep Learning Enabled Universal Multiplexed Fluorescence Detection for Point-of-Care Applications
2024-08-23, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c00860
PMID:39010300
|
研究论文 | 开发了一种结合机器学习的紧凑型无透镜荧光传感系统,用于可扩展的多重荧光检测 | 无需光学调整即可实现多重荧光检测,通过更新机器学习模型即可轻松扩展多重检测能力而无需改变硬件 | NA | 开发便携式、经济高效的多重荧光检测系统用于即时检测应用 | 三种常见呼吸道病毒 | 机器学习 | 呼吸道病毒感染 | 环介导等温扩增(LAMP) | 机器学习模型 | 荧光数据 | NA | NA | 预训练机器学习模型 | NA | NA |
| 120 | 2025-10-07 |
Rapid Identification of Drug Mechanisms with Deep Learning-Based Multichannel Surface-Enhanced Raman Spectroscopy
2024-08-23, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c01205
PMID:39138903
|
研究论文 | 开发基于多通道表面增强拉曼光谱和深度学习的药物作用机制快速识别平台 | 结合多通道SERS传感器阵列与深度学习算法,实现化疗药物作用机制的快速高精度识别 | NA | 快速识别化疗药物的作用机制以促进药物开发和有效使用 | 化疗药物及其在细胞中诱导的分子变化 | 机器学习 | 癌症 | 表面增强拉曼光谱,自组装单分子层 | CNN | 光谱数据 | NA | NA | 卷积神经网络 | 准确率 | NA |