本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 141 | 2025-04-06 |
Neural Network Layer Algebra: A Framework to Measure Capacity and Compression in Deep Learning
2024-Aug, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3241100
PMID:37027551
|
research paper | 提出了一种新的框架来测量深度神经网络的固有特性,特别是容量和压缩性 | 引入了层代数的概念,并提出了两个新的度量指标:层复杂度和层内在能力,这些指标仅依赖于网络结构而非参数 | 虽然框架可以推广到任何网络架构,但研究主要集中在卷积网络上 | 测量深度神经网络的固有特性,即容量和压缩性 | 深度神经网络,特别是卷积网络 | machine learning | NA | NA | CNN | image | NA | NA | NA | NA | NA |
| 142 | 2025-04-06 |
Probabilistic Attention Based on Gaussian Processes for Deep Multiple Instance Learning
2024-Aug, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3245329
PMID:37027623
|
research paper | 提出了一种基于高斯过程的概率注意力机制(AGP),用于深度多实例学习(MIL),以提供预测的不确定性估计 | 首次将高斯过程引入MIL中的注意力机制,提供实例级可解释性和预测不确定性 | 未明确提及具体限制,但可能面临高斯过程计算复杂度高的问题 | 开发一种能够提供预测不确定性的深度MIL方法,特别适用于医学领域 | 多实例学习模型及其在医学图像分析中的应用 | machine learning | cancer | Gaussian processes | AGP (Attention Gaussian Process) | image | 小于100个标签的小型数据集以及MNIST和CIFAR-10合成数据 | NA | NA | NA | NA |
| 143 | 2025-04-06 |
Artificial Intelligence (AI)-Based Computer-Assisted Detection and Diagnosis for Mammography: An Evidence-Based Review of Food and Drug Administration (FDA)-Cleared Tools for Screening Digital Breast Tomosynthesis (DBT)
2024-Aug, AI in precision oncology
DOI:10.1089/aipo.2024.0022
PMID:40182614
|
综述 | 本文回顾了基于人工智能的计算机辅助检测和诊断工具在数字乳腺断层合成摄影筛查中的应用及其FDA批准情况 | 总结了新一代深度学习AI工具在乳腺筛查中的潜力,并评估了FDA批准的六种AI工具的性能 | 现有证据有限,仅包括两项小规模的实施后临床研究,需要更多前瞻性研究来全面评估影响 | 评估AI在数字乳腺断层合成摄影筛查中的应用效果 | FDA批准的六种基于AI的计算机辅助检测/诊断工具 | 数字病理学 | 乳腺癌 | 深度学习 | NA | 医学影像 | 多项多读者多病例研究、回顾性分析和两项真实世界评估 | NA | NA | NA | NA |
| 144 | 2025-10-07 |
Multiplex Detection of Foodborne Pathogens using 3D Nanostructure Swab and Deep Learning-Based Classification of Raman Spectra
2024-08, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202308317
PMID:38564785
|
研究论文 | 提出了一种结合3D纳米结构拭子和深度学习拉曼信号分类的多重食源性病原体检测方法 | 首次将3D纳米结构拭子捕获技术与便携式拉曼仪器及深度学习分类算法相结合,实现快速准确的多种食源性细菌检测 | NA | 开发简单、快速、灵敏的食源性病原体检测方法以支持食品安全监测 | 食源性细菌 | 机器学习 | 食源性疾病 | 拉曼光谱技术 | CNN | 光谱数据 | NA | NA | 1D卷积神经网络 | 准确率 | NA |
| 145 | 2025-10-07 |
Deep learning-based segmentation of subcellular organelles in high-resolution phase-contrast images
2024-Aug-30, Cell structure and function
IF:2.0Q4
DOI:10.1247/csf.24036
PMID:39085139
|
研究论文 | 本研究开发了基于深度学习的亚细胞器分割方法,用于高分辨率相差图像分析 | 使用荧光标记作为真实掩膜来源,在无标记活细胞图像中实现亚细胞器的精确分割 | NA | 开发高分辨率相差图像中亚细胞器的精确分割方法 | 未染色活细胞中的亚细胞器 | 计算机视觉 | NA | 无标记成像,荧光标记,高分辨率相差显微镜 | 深度学习 | 高分辨率相差图像,荧光图像 | NA | NA | NA | NA | NA |
| 146 | 2025-10-07 |
An end-to-end deep learning pipeline to derive blood input with partial volume corrections for automated parametric brain PET mapping
2024-Aug-19, Biomedical physics & engineering express
IF:1.3Q3
DOI:10.1088/2057-1976/ad6a64
PMID:39094595
|
研究论文 | 提出一种端到端深度学习流程,通过部分容积校正自动生成血液输入函数用于脑PET参数映射 | 首次结合3D U-Net和RNN实现非侵入性血液输入函数计算,无需动脉采血 | 仅基于50例FDG PET扫描进行验证,样本量有限 | 开发非侵入性定量分析动态脑FDG-PET的方法 | 人类脑部FDG PET扫描数据 | 医学影像分析 | 神经系统疾病 | 动态FDG-PET成像 | 3D U-Net, RNN | 3D PET影像 | 50例人类脑部FDG PET扫描 | NA | 3D U-Net, RNN | Dice系数, 交并比, 均方根误差 | NA |
| 147 | 2025-03-25 |
Community assessment of methods to deconvolve cellular composition from bulk gene expression
2024-Aug-27, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-50618-0
PMID:39191725
|
research paper | 评估从批量基因表达数据中解卷积细胞组成的方法,通过社区范围的DREAM挑战进行 | 评估了多种解卷积方法,包括深度学习方法的强表现,确立了该范式在解卷积中的适用性 | 部分方法未针对所有功能性CD8+ T细胞状态进行训练或准确度较低 | 评估解卷积方法在推断肿瘤样本中免疫浸润水平的效果 | 体外和计算机模拟的癌症与健康免疫细胞的混合转录谱 | machine learning | cancer | bulk gene expression analysis | deep learning | gene expression data | NA | NA | NA | NA | NA |
| 148 | 2025-03-25 |
Deep learning predicts postoperative opioids refills in a multi-institutional cohort of surgical patients
2024-08, Surgery
IF:3.2Q1
DOI:10.1016/j.surg.2024.03.054
PMID:38796387
|
research paper | 该研究探讨了深度学习模型在预测术后需要阿片类药物补充的患者中的应用 | 首次将深度学习模型应用于预测术后阿片类药物补充需求,并通过多机构队列验证其高准确性 | 研究为回顾性设计,且仅纳入单一医疗中心的患者数据 | 优化术后阿片类药物处方策略,平衡药物滥用风险与患者疼痛控制需求 | 接受择期手术的成年患者 | machine learning | NA | deep learning, random forest, eXtreme Gradient Boosting | 深度学习、随机森林、XGBoost | 临床医疗记录 | 9,731例择期手术患者(平均年龄62.1岁,51.4%为女性) | NA | NA | NA | NA |
| 149 | 2025-10-07 |
Deep learning structural insights into heterotrimeric alternatively spliced P2X7 receptors
2024-Aug, Purinergic signalling
IF:3.0Q2
DOI:10.1007/s11302-023-09978-3
PMID:38032425
|
研究论文 | 本研究应用AlphaFold2-Multimer深度学习方法预测异源三聚体选择性剪接P2X7受体的结构 | 首次验证AF2M在预测三聚体P2X7受体结构中的准确性,并成功生成多种异源三聚体剪接变体的结构模型 | 模型验证主要依赖计算指标和分子动力学模拟,缺乏实验结构直接验证异源三聚体模型 | 探索选择性剪接对P2X7受体结构和功能的影响 | P2X7受体及其剪接变体(P2X7B、P2X7E、P2X7J、P2X7L) | 结构生物信息学 | NA | 深度学习结构预测,冷冻电镜,分子动力学模拟 | AlphaFold2-Multimer | 蛋白质序列,结构数据 | 多种P2X7受体剪接变体组合 | AlphaFold2 | AlphaFold2-Multimer | 模型置信度评分,分子动力学稳定性,保守区域灵活性 | NA |
| 150 | 2025-10-07 |
Deep Learning-Based Reconstruction Improves the Image Quality of Low-Dose CT Colonography
2024-08, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.01.021
PMID:38290889
|
研究论文 | 评估基于深度学习的重建方法在低剂量CT结肠成像中的图像质量改善效果 | 首次系统比较深度学习重建与迭代重建在低剂量CT结肠成像中的性能表现 | 样本仅来自单一中心,未进行多中心验证 | 评估深度学习重建技术在低剂量CT结肠成像中的图像质量 | 270名成年志愿者(平均年龄47.94岁,115名男性) | 医学影像 | 结直肠癌 | CT结肠成像 | 深度学习 | 医学影像 | 270名志愿者,按BMI分为四组 | NA | NA | 噪声、信噪比(SNR)、对比噪声比(CNR)、主观图像质量评分 | NA |
| 151 | 2025-10-07 |
Research Progress of Artificial Intelligence in the Grading and Classification of Meningiomas
2024-08, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.02.003
PMID:38413314
|
综述 | 本文总结分析了人工智能在脑膜瘤分级分类中的研究进展,重点关注影像组学和深度学习的应用 | 系统梳理了AI技术在脑膜瘤分级分类领域的最新研究成果和发展趋势 | 现有研究存在数据样本有限、模型泛化能力不足等问题 | 促进人工智能在脑膜瘤诊疗中的未来应用 | 脑膜瘤患者 | 医学影像分析 | 脑膜瘤 | 影像组学, 深度学习 | 深度学习模型 | 医学影像 | NA | NA | NA | NA | NA |
| 152 | 2025-10-07 |
Acupuncture indication knowledge bases: meridian entity recognition and classification based on ACUBERT
2024-08-30, Database : the journal of biological databases and curation
DOI:10.1093/database/baae083
PMID:39213389
|
研究论文 | 基于ACUBERT模型进行针灸适应症知识库的经络实体识别与分类研究 | 开发了具有中医特色的针灸适应症知识库(ACU-IKD)和ACUBERT模型,基于八纲辨证和脏腑辨证作为基础标签训练经络辨证模型 | NA | 探索ACUBERT模型在针灸适应症经络实体识别与分类中的有效性及差异原因 | 从82部针灸医籍中选取的54,593个不同实体 | 自然语言处理 | NA | BERT预训练 | BERT, SVM, Random Forest | 文本 | 54,593个实体 | NA | BERT | 精确率, 召回率, F1分数 | NA |
| 153 | 2025-10-07 |
Integrating deep learning architectures for enhanced biomedical relation extraction: a pipeline approach
2024-08-28, Database : the journal of biological databases and curation
DOI:10.1093/database/baae079
PMID:39197056
|
研究论文 | 提出一种增强型端到端流水线方法,用于生物医学关系抽取和新颖性检测 | 整合最先进的深度学习方法,将BERT模型适配为双向和文档级抽取,并采用混合实体链接方法 | 关系抽取和新颖性检测任务在文档级别仍然具有挑战性,数据集需要进一步改进 | 生物医学关系抽取和新颖性检测 | 科学出版物中的生物医学实体和关系 | 自然语言处理 | NA | 生物医学文本挖掘 | BERT, CNN | 文本 | 基于BioRED基准语料库 | NA | BERT, PURE, 卷积神经网络 | NER: 93.53, EL: 83.87, RE: 46.18, ND: 38.86 | NA |
| 154 | 2025-10-07 |
Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks
2024-08-05, Database : the journal of biological databases and curation
DOI:10.1093/database/baae066
PMID:39104284
|
研究论文 | 提出基于深度学习的方法从生物医学文献中提取标准化的miRNA-疾病关联 | 使用基于Transformer的神经网络从文本数据中提取miRNA-疾病关系,并通过远程监督扩展训练语料库 | NA | 从生物医学文献中自动提取miRNA-疾病关联关系 | miRNA与疾病之间的关联关系 | 自然语言处理 | 神经退行性疾病 | 文本挖掘 | Transformer | 文本 | NA | NA | Transformer | AUC | NA |
| 155 | 2025-03-16 |
CryoSamba: self-supervised deep volumetric denoising for cryo-electron tomography data
2024-Aug-03, bioRxiv : the preprint server for biology
DOI:10.1101/2024.07.11.603117
PMID:39071256
|
研究论文 | 本文介绍了CryoSamba,一种基于自监督深度学习的模型,用于去噪冷冻电子断层扫描(cryo-ET)图像 | CryoSamba通过深度学习插值平均运动补偿的邻近平面,模仿增加曝光,增强连贯信号并减少高频噪声,显著提高断层扫描对比度和信噪比,且无需预录图像、合成数据、标签或注释、噪声模型或配对体积 | NA | 提高冷冻电子断层扫描图像的信噪比和对比度,以便更好地进行3D断层扫描视觉解释 | 冷冻电子断层扫描图像 | 计算机视觉 | NA | 深度学习 | 自监督深度学习模型 | 3D体积图像 | NA | NA | NA | NA | NA |
| 156 | 2025-10-07 |
Video-Based Kinematic Analysis of Movement Quality in a Phase 3 Clinical Trial of Troriluzole in Adults with Spinocerebellar Ataxia: A Post Hoc Analysis
2024-Aug, Neurology and therapy
IF:3.9Q1
DOI:10.1007/s40120-024-00625-6
PMID:38814532
|
研究论文 | 本研究通过视频分析和机器学习方法评估三鲁鲁唑对脊髓小脑性共济失调患者步态质量的疗效 | 开发了基于深度学习的姿态分散指数,量化步态对称性、平衡性和稳定性,为传统临床评估提供补充 | 样本量有限(仅67例串联步态和56例自然步态视频可用),自然步态评估结果未达统计学显著性 | 评估三鲁鲁唑对脊髓小脑性共济失调患者步态质量的影响 | 脊髓小脑性共济失调成人患者 | 计算机视觉 | 脊髓小脑性共济失调 | 视频分析,深度学习姿态提取 | 深度学习 | 视频 | 218名随机化参与者中,67名有可解释的串联步态视频,56名有自然步态视频 | NA | 姿态提取算法 | p值,置信区间,泊松系数 | NA |
| 157 | 2024-08-23 |
A correspondence of evaluation of deep learning algorithms in detecting Moyamoya disease: a systematic review and single-arm meta-analysis
2024-Aug-21, Neurosurgical review
IF:2.5Q1
DOI:10.1007/s10143-024-02701-9
PMID:39167278
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 158 | 2025-03-05 |
CANDI: A Web Server for Predicting Molecular Targets and Pathways of Cannabis-Based Therapeutics
2024-Aug-09, Research square
DOI:10.21203/rs.3.rs-4744915/v1
PMID:39149470
|
研究论文 | 本文介绍了一个名为CANDI的Web服务器,用于预测大麻基治疗药物的分子靶点和通路 | 开发了CANDI服务器,结合深度学习模型DRIFT,预测大麻化合物的分子靶点和相关通路,为大麻基治疗药物的开发提供新工具 | 未提及具体实验验证结果,预测结果的准确性有待进一步验证 | 研究大麻化合物的分子靶点和相关通路,以开发靶向有效的大麻基治疗药物 | 大麻化合物及其分子靶点和通路 | 机器学习 | 疼痛、炎症、癌症、骨关节炎 | 深度学习 | 基于注意力机制的神经网络 | 化合物-靶点相互作用数据 | NA | NA | NA | NA | NA |
| 159 | 2025-03-05 |
Revolutionizing Aneurysm detection: The role of artificial intelligence in reducing rupture rates
2024-Aug-01, Neurosurgical review
IF:2.5Q1
DOI:10.1007/s10143-024-02636-1
PMID:39088154
|
研究论文 | 本文探讨了人工智能在降低未破裂脑动脉瘤破裂率中的作用 | 利用AI和ML技术提高脑动脉瘤的早期检测和破裂风险预测准确性 | 未提及具体的研究局限性 | 研究人工智能在脑动脉瘤检测和破裂风险预测中的应用 | 脑动脉瘤患者 | 数字病理学 | 脑动脉瘤 | CT血管造影(CTA) | PointNet++ | 图像 | 未提及具体样本数量 | NA | NA | NA | NA |
| 160 | 2025-10-07 |
Artificial Intelligence for Early Detection of Pediatric Eye Diseases Using Mobile Photos
2024-08-01, JAMA network open
IF:10.5Q1
|
研究论文 | 开发基于深度学习的人工智能模型,通过移动设备拍摄的照片早期检测儿童眼部疾病 | 首次使用移动照片和AI技术实现儿童近视、斜视和上睑下垂的便捷家庭筛查 | 研究为横断面设计,样本量相对有限,不同年龄组间存在性能差异 | 开发AI模型用于儿童眼部疾病的早期检测 | 被诊断患有近视、斜视或上睑下垂的儿童患者 | 计算机视觉 | 眼科疾病 | 深度学习 | 深度学习模型 | 图像 | 476名患者的1419张图像(225名女性,47.27%;299名6-12岁儿童,62.82%) | NA | NA | 敏感度, 特异度, 准确率, AUC, 阳性预测值, 阴性预测值, 阳性似然比, 阴性似然比, F1分数 | NA |