本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2025-04-02 |
AI-enabled CT-guided end-to-end quantification of total cardiac activity in 18FDG cardiac PET/CT for detection of cardiac sarcoidosis
2024-Sep-23, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.09.20.24314081
PMID:39399046
|
research paper | 提出了一种基于深度学习的全自动流程,用于通过CT衰减图分割心脏腔室来量化[18F]FDG PET活动,并评估了基于该框架的几种定量方法 | 首次提出了一种全自动的基于CT衰减图的心脏腔室分割方法,用于量化[18F]FDG PET活动,并评估了多种定量方法的预测性能 | 样本量较小(69例患者),且特异性较低(65%) | 开发一种全自动的方法来量化[18F]FDG PET活动,以检测心脏结节病 | 疑似心脏结节病的患者 | digital pathology | cardiac sarcoidosis | PET/CT, deep learning | DL | image | 69例患者 |
2 | 2025-04-02 |
Computer Vision Identification of Trachomatous Inflammation-Follicular Using Deep Learning
2024-Sep-20, Cornea
IF:1.9Q2
DOI:10.1097/ICO.0000000000003701
PMID:39312712
|
research paper | 该研究开发并评估了一种基于深度学习的计算机视觉模型,用于识别沙眼性炎症-滤泡(TF),以减少调查成本并提高可靠性 | 首次使用MobileNetV3大型深度卷积神经网络(CNN)模型对沙眼性炎症-滤泡进行自动分类,显著提高了筛查效率和准确性 | 需要在具有不同TF流行率的多样化人群中进行进一步验证,以确保模型的泛化能力 | 开发一种能够准确、高效地进行大规模沙眼筛查的自动化方法 | 0至9岁儿童的56,725张眼睑内翻照片 | computer vision | 沙眼 | deep learning | MobileNetV3 large CNN | image | 56,725张照片来自11,358名儿童 |
3 | 2024-09-25 |
Construction of Risk Prediction Model of Type 2 Diabetic Kidney Disease Based on Deep Learning (Diabetes Metab J 2024;48:771-9)
2024-09, Diabetes & metabolism journal
IF:6.8Q1
DOI:10.4093/dmj.2024.0490
PMID:39313234
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
4 | 2025-04-02 |
Evaluating cell type deconvolution in FFPE breast tissue: application to benign breast disease
2024-Sep, NAR genomics and bioinformatics
IF:4.0Q1
DOI:10.1093/nargab/lqae098
PMID:40162103
|
research paper | 评估FFPE乳腺组织中细胞类型去卷积方法的应用,特别是在良性乳腺疾病中的表现 | 构建了乳腺组织的单细胞RNA-seq参考数据,并测试了多种去卷积方法,发现基于深度学习的Scaden方法在FFPE伪影影响下表现最优 | FFPE伪影显著影响了去卷积方法的性能,RMSE在0.04到0.17之间 | 优化从FFPE样本中定义个体细胞类型组成的策略 | FFPE乳腺组织样本 | digital pathology | breast cancer | RNA-seq, single-cell RNA-seq | deep learning (Scaden) | RNA-seq数据 | 62例良性乳腺疾病RNA-seq样本 |
5 | 2025-04-01 |
Modeling protein-small molecule conformational ensembles with ChemNet
2024-Sep-25, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.25.614868
PMID:39386615
|
research paper | 该研究开发了一种名为ChemNet的图神经网络,用于模拟蛋白质-小分子系统的构象异质性 | ChemNet能够快速生成小分子和蛋白质-小分子系统的构象集合,并在酶设计方面表现出更高的成功率和活性 | NA | 模拟蛋白质-小分子系统的构象异质性,并提高酶设计的成功率 | 蛋白质-小分子系统 | machine learning | NA | graph neural network | ChemNet | atomic level structures | 数据来自Cambridge Structural Database和Protein Data Bank |
6 | 2024-08-07 |
Comment on 'Deep learning-assisted detection and segmentation of intracranial hemorrhage in noncontrast computed tomography scans of acute stroke patients: a systematic review and meta-analysis'
2024-Sep-01, International journal of surgery (London, England)
DOI:10.1097/JS9.0000000000001718
PMID:38814316
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
7 | 2025-03-28 |
An initial game-theoretic assessment of enhanced tissue preparation and imaging protocols for improved deep learning inference of spatial transcriptomics from tissue morphology
2024-Sep-23, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae476
PMID:39367648
|
研究论文 | 本文探讨了通过改进组织制备和成像协议来增强深度学习从组织形态学推断空间转录组学的性能 | 提出了采用临床实施标准的组织处理和成像实践(永久切片、自动组织染色和临床级扫描)以显著提高模型性能的新方法 | 研究仅针对13名病理T III期结直肠癌患者进行,样本量较小 | 研究旨在通过改进组织制备和成像协议,提高深度学习从组织形态学推断空间转录组学的性能,并降低大规模空间分析的成本 | 13名病理T III期结直肠癌患者的组织样本 | 数字病理 | 结直肠癌 | 空间转录组学(ST)、Visium CytAssist检测 | Inceptionv3 | 全切片图像(WSI) | 13名病理T III期结直肠癌患者的组织样本 |
8 | 2025-03-28 |
Prediction of future dementia among patients with mild cognitive impairment (MCI) by integrating multimodal clinical data
2024-Sep-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e36728
PMID:39281465
|
研究论文 | 本研究评估了多模态机器学习方法,特别是集成集成(EI)框架,在预测轻度认知障碍(MCI)患者未来痴呆发展方面的能力 | 使用EI框架来利用多模态数据的互补性和共识性,这是之前痴呆相关预测研究未充分捕捉的 | NA | 预测轻度认知障碍(MCI)患者未来痴呆的发展 | 轻度认知障碍(MCI)患者 | 机器学习 | 老年病 | 结构磁共振成像(MRI)和正电子发射断层扫描(PET) | 集成集成(EI)框架、XGBoost、深度学习 | 临床和影像数据 | 来自TADPOLE挑战的数据 |
9 | 2025-03-27 |
Effect of childhood atropine treatment on adult choroidal thickness using sequential deep learning-enabled segmentation
2024 Sep-Oct, Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
DOI:10.1016/j.apjo.2024.100107
PMID:39378966
|
研究论文 | 使用序列深度学习分割技术评估儿童期阿托品治疗对成人脉络膜厚度的影响 | 首次使用序列深度学习方法测量成人脉络膜厚度,并探讨儿童期阿托品治疗的长期影响 | 研究样本量有限,且未考虑其他可能影响脉络膜厚度的因素 | 评估儿童期阿托品治疗对成人脉络膜厚度的长期影响 | 接受过儿童期阿托品治疗的成人 | 数字病理学 | 近视 | 扫频光学相干断层扫描(SS-OCT) | 序列深度学习 | 图像 | 422只眼睛(94只未接受阿托品治疗,328只接受过治疗) |
10 | 2024-09-10 |
Validation of a fully automated deep learning-enabled solution for CCTA atherosclerotic plaque and stenosis quantification in a diverse real-world cohort
2024 Sep-Oct, Journal of cardiovascular computed tomography
IF:5.5Q1
DOI:10.1016/j.jcct.2024.03.012
PMID:38553402
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
11 | 2025-03-23 |
Application of deep learning models for accurate classification of fluid collections in acute necrotizing pancreatitis on computed tomography: a multicenter study
2024-Sep-30, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04607-y
PMID:39347977
|
研究论文 | 本研究应用基于CT的深度学习模型,对急性胰腺炎中的胰腺液体积聚进行固体碎屑分类 | 首次在急性胰腺炎的胰腺液体积聚分类中应用了Vision transformer (ViT)和MedViT架构,并进行了多中心验证 | 样本量相对较小,尤其是外部测试队列仅有23名患者 | 提高急性胰腺炎中胰腺液体积聚的固体碎屑分类准确性 | 急性胰腺炎患者的胰腺液体积聚 | 计算机视觉 | 胰腺炎 | CT成像 | ResNet 50, Vision transformer (ViT), MedViT | 图像 | 152名患者(129名用于训练/验证,23名用于测试),共2180张CT图像 |
12 | 2025-03-21 |
A Deep Learning Model for Predicting Molecular Subtype of Breast Cancer by Fusing Multiple Sequences of DCE-MRI From Two Institutes
2024-09, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.03.002
PMID:38637240
|
研究论文 | 本文评估了深度学习在利用来自两个机构的DCE-MRI预测不同乳腺癌分子亚型中的性能 | 开发了一种多分支卷积神经网络(MBCNN),并采用中间融合和80像素的ROI大小进行外观转换,以优化性能 | 在预测luminal B、HER2-enriched和TN亚型时,MBCNN虽然表现优于CNN和CLSTM,但除了在TN亚型中对CNN表现出统计显著性外,其他情况下未达到统计显著性 | 评估深度学习在预测乳腺癌分子亚型中的性能 | 366名乳腺癌患者 | 计算机视觉 | 乳腺癌 | DCE-MRI | MBCNN, CNN, CLSTM | 图像 | 366名乳腺癌患者(训练集292名,验证集49名,测试集25名) |
13 | 2025-03-21 |
Develop and Validate a Nomogram Combining Contrast-Enhanced Spectral Mammography Deep Learning with Clinical-Pathological Features to Predict Neoadjuvant Chemotherapy Response in Patients with ER-Positive/HER2-Negative Breast Cancer
2024-09, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.03.035
PMID:38641451
|
研究论文 | 开发并验证了一个结合对比增强光谱乳腺摄影(CESM)深度学习和临床病理特征的列线图,用于预测ER阳性/HER2阴性乳腺癌患者的新辅助化疗(NAC)反应 | 结合CESM深度学习和临床病理特征,开发了一个新的列线图模型,用于预测NAC反应,该模型在预测性能上优于单独的深度学习模型和临床模型 | 研究为回顾性研究,可能存在选择偏差,且样本量相对较小 | 预测ER阳性/HER2阴性乳腺癌患者的新辅助化疗反应 | 265名ER阳性/HER2阴性乳腺癌患者 | 数字病理 | 乳腺癌 | 对比增强光谱乳腺摄影(CESM) | ResNet34 | 图像 | 265名乳腺癌患者 |
14 | 2025-03-19 |
Deep Learning Estimation of Small Airways Disease from Inspiratory Chest CT is Associated with FEV1 Decline in COPD
2024-Sep-11, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.09.10.24313079
PMID:39314974
|
研究论文 | 本文开发了一种AI模型,用于从吸气胸部CT中估计小气道疾病(fSADTLC),并研究了其在慢性阻塞性肺疾病(COPD)中的临床关联 | 通过AI模型从单一吸气CT中估计小气道疾病,减少了对呼气CT的需求,提高了临床适用性 | 研究依赖于特定数据集(SPIROMICS和COPDGene),可能限制了结果的普适性 | 评估AI模型在估计小气道疾病方面的有效性,并研究其与COPD临床指标的关系 | COPD患者 | 数字病理学 | 慢性阻塞性肺疾病 | AI模型,生成模型 | 生成模型 | CT图像 | 2513名参与者(SPIROMICS研究),其中1055名用于模型开发,1458名用于验证;另外458名来自COPDGene研究用于验证 |
15 | 2025-03-16 |
Cardiovascular care with digital twin technology in the era of generative artificial intelligence
2024-Sep-26, European heart journal
IF:37.6Q1
DOI:10.1093/eurheartj/ehae619
PMID:39322420
|
综述 | 本文综述了数字孪生技术在心血管医学中的应用及其未来潜力,特别是在生成式人工智能的背景下 | 探讨了数字孪生技术如何结合生成式人工智能和多模态数据,以增强心血管疾病的个性化治疗和预测 | 讨论了将数字孪生技术整合到个性化心血管护理中的个体和社会挑战以及伦理考虑 | 探索数字孪生技术在心血管医学中的应用及其未来发展方向 | 心血管疾病患者 | 数字病理学 | 心血管疾病 | 生成式人工智能 | 深度学习模型 | 多模态数据 | NA |
16 | 2025-03-16 |
Deep-learning generated B-line score mirrors clinical progression of disease for patients with heart failure
2024-Sep-16, The ultrasound journal
DOI:10.1186/s13089-024-00391-4
PMID:39283362
|
研究论文 | 本研究探讨了深度学习算法生成的B线严重程度评分与肺充血和疾病严重程度之间的关系,并评估了治疗过程中评分的变化 | 利用深度学习算法生成B线评分,为临床提供了一种客观评估肺充血和疾病严重程度的方法 | B线评分与Rothman指数无显著关联,可能限制了其在某些临床评估中的应用 | 确定深度学习生成的B线评分是否与肺充血和疾病严重程度相关,并评估治疗过程中的评分变化 | 疑似充血性心力衰竭的患者 | 数字病理学 | 心血管疾病 | 深度学习 | 深度学习算法 | 超声图像 | 110名独特受试者(3379个超声片段) |
17 | 2025-03-16 |
Deep network and multi-atlas segmentation fusion for delineation of thigh muscle groups in three-dimensional water-fat separated MRI
2024-Sep, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.5.054003
PMID:39234425
|
研究论文 | 本文提出了一种多方法和多图谱的自动化分割方法,用于三维大腿磁共振图像中功能性肌肉群的分割 | 结合多图谱分割(MAS)和深度学习模型,提出了一种融合多种解剖映射的框架,以提高分割精度 | 研究样本量较小,仅包括15名健康受试者和4名患者 | 开发一种自动化分割方法,用于三维大腿磁共振图像中功能性肌肉群的分割,以支持衰老和代谢疾病的研究及成像生物标志物的开发 | 大腿的四个主要功能性肌肉群:股薄肌、腘绳肌、股四头肌和缝匠肌 | 计算机视觉 | NA | 化学位移编码水脂磁共振成像(CSE-MRI) | 3D深度学习模型 | 三维磁共振图像 | 15名健康受试者和4名患者 |
18 | 2025-03-15 |
CryoTEN: Efficiently Enhancing Cryo-EM Density Maps Using Transformers
2024-Sep-11, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.06.611715
PMID:39314387
|
研究论文 | 本文介绍了CryoTEN,一种基于三维U-Net风格Transformer的模型,用于有效提升冷冻电镜密度图的质量 | CryoTEN是首个将Transformer应用于冷冻电镜密度图增强的模型,相比现有深度学习方法,其运行速度快10倍以上且GPU内存需求更低 | 尽管CryoTEN在提升密度图质量方面表现出色,但在质量改进方面仍排名第二,未达到最优 | 提升冷冻电镜密度图的质量,以构建更高质量的蛋白质结构 | 冷冻电镜密度图 | 计算机视觉 | NA | 冷冻电镜(cryo-EM) | 三维U-Net风格Transformer | 图像 | 1,295个冷冻电镜图作为训练集,150个独立测试集 |
19 | 2025-03-15 |
Clinical and genetic associations of asymmetric apical and septal left ventricular hypertrophy
2024-Sep, European heart journal. Digital health
DOI:10.1093/ehjdh/ztae060
PMID:39318696
|
研究论文 | 本研究利用深度学习衍生的表型,探讨了不对称心尖和室间隔左心室肥大的临床和遗传关联 | 首次使用深度学习技术分析心尖和室间隔肥大的基因组和临床关联,独立于总左心室质量 | 需要进一步在多民族队列中进行研究 | 探讨不对称心尖和室间隔左心室肥大的临床和遗传关联 | 35,268名UK Biobank参与者 | 机器学习 | 心血管疾病 | 深度学习 | NA | 基因组和临床数据 | 35,268名UK Biobank参与者 |
20 | 2025-03-14 |
Bibliometric analysis of ophthalmic OCT and OCT angiography research trends over the past 20 years
2024-Sep-09, International ophthalmology
IF:1.4Q3
DOI:10.1007/s10792-024-03292-6
PMID:39251539
|
研究论文 | 本文对过去20年眼科OCT和OCTA研究的文献计量学分析进行了全面回顾 | 提供了眼科OCT和OCTA研究的文献计量学分析,揭示了研究趋势和热点 | 仅基于Web of Science Core Collection的数据,可能未涵盖所有相关文献 | 分析眼科OCT和OCTA研究的发展趋势和热点 | 眼科OCT和OCTA相关的研究文献 | 数字病理学 | 眼科疾病 | OCT, OCTA | NA | 文献数据 | 20,817篇文章,48,160位作者,106个国家 |