深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202409-202409] [清除筛选条件]
当前共找到 1163 篇文献,本页显示第 181 - 200 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
181 2025-10-07
Tumor evolution metrics predict recurrence beyond 10 years in locally advanced prostate cancer
2024-09, Nature cancer IF:23.5Q1
研究论文 本研究结合基因组学和人工智能辅助组织病理学分析,开发了预测局部晚期前列腺癌长期复发的进化指标 首次将基因组瘤内异性与深度学习评估的形态学异质性相结合,识别出能够预测10年以上复发的临床生物标志物 样本量相对有限,需要更大规模研究验证 探索癌症进化指标在预测局部晚期前列腺癌长期复发中的临床应用价值 局部晚期前列腺癌患者 数字病理学 前列腺癌 基因组测序, 深度学习 深度学习模型 基因组数据, 组织切片图像 114名患者的642个基因组样本,250名患者的1,923个组织学切片 NA NA 风险比, 置信区间, 中位复发时间 NA
182 2025-10-07
Evaluating cell type deconvolution in FFPE breast tissue: application to benign breast disease
2024-09, NAR genomics and bioinformatics IF:4.0Q1
研究论文 本研究评估了多种细胞类型反卷积方法在FFPE乳腺组织中的应用性能,并开发了专用分析工具 构建了乳腺组织单细胞RNA-seq参考数据,系统测试了FFPE人工假象对反卷积方法的影响,并开发了SCdeconR软件包 仅针对良性乳腺疾病进行研究,样本量为62例,可能不适用于其他疾病类型 优化从FFPE样本中定义单个细胞类型组成的策略 FFPE乳腺组织样本 数字病理学 乳腺疾病 RNA-seq, 单细胞RNA-seq, 数字病理学方法 深度学习 转录组数据, 病理图像 62例良性乳腺疾病RNA-seq样本 Scaden, R NA 均方根误差(RMSE) NA
183 2025-10-07
qlty: handling large tensors in scientific imaging deep-learning workflows
2024-Sep, Software impacts IF:1.3Q3
研究论文 介绍qlty工具包,用于处理科学成像中超出GPU内存容量的大型张量数据 开发专门针对科学成像工作流的张量管理工具包,提供子采样、数据清理和拼接功能 NA 解决科学成像中大型体积数据集在深度学习工作流中的内存管理问题 科学成像中的大型体积数据集 计算机视觉 NA 深度学习 NA 体积图像数据 NA NA NA NA 标准GPU
184 2025-04-12
Deep Learning-Based Prediction of Hepatic Decompensation in Patients With Primary Sclerosing Cholangitis With Computed Tomography
2024-Sep, Mayo Clinic proceedings. Digital health
研究论文 本研究探讨了使用深度学习模型基于CT影像预测原发性硬化性胆管炎(PSC)患者肝失代偿的潜力 首次应用3D-DenseNet121模型分析CT影像预测PSC患者的肝失代偿,并通过解剖区域分割验证模型决策过程 回顾性研究设计,样本量有限(277例),未进行外部验证 开发基于深度学习的肝失代偿预测工具 原发性硬化性胆管炎(PSC)患者 数字病理 肝病 CT成像 3D-DenseNet121 3D医学影像 277例接受腹部CT扫描的成人PSC患者 NA NA NA NA
185 2025-04-06
Few-shot Class-incremental Learning for Retinal Disease Recognition
2024-Sep-18, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种名为Re-FSCIL的新框架,用于少样本类增量视网膜疾病识别,通过整合RETFound模型和细粒度模块,采用前向兼容训练策略和监督对比学习来提高模型的适应性和特征判别能力 提出Re-FSCIL框架,整合RETFound模型和细粒度模块,采用前向兼容训练策略和监督对比学习,显著提升了少样本类增量学习在视网膜疾病识别中的性能 NA 开发能够持续学习新类别且保留现有知识的深度学习模型,特别适用于视网膜疾病诊断系统 视网膜疾病 数字病理 视网膜疾病 监督对比学习,特征融合 RETFound 图像 两个新基准数据集RFMiD38和JSIEC39 NA NA NA NA
186 2025-04-06
Timely ICU Outcome Prediction Utilizing Stochastic Signal Analysis and Machine Learning Techniques with Readily Available Vital Sign Data
2024-09, IEEE journal of biomedical and health informatics IF:6.7Q1
research paper 该研究提出了一种结合随机信号分析和机器学习技术的新方法,用于从ICU患者的实时生命体征时间序列中提取具有强预测能力的特征,以实现准确及时的ICU结果预测 该方法通过随机信号分析和机器学习技术提取有意义的特征,显著提高了ICU结果预测的准确性,超越了包括APACHE IV和深度学习模型在内的基线方法 该方法可能仍面临模型可解释性不足的问题,限制了其在临床实践中的广泛应用 开发一种新方法,用于准确及时地预测ICU患者的结果,以减轻重症监护需求带来的经济和医疗负担 ICU患者的实时生命体征时间序列数据 machine learning NA 随机信号分析,机器学习 NA 时间序列数据 NA NA NA NA NA
187 2025-04-03
Automated detection of Bornean white-bearded gibbon (Hylobates albibarbis) vocalizations using an open-source framework for deep learning
2024-09-01, The Journal of the Acoustical Society of America IF:2.1Q1
research paper 本文介绍了一个开源深度学习框架,用于自动检测婆罗洲白须长臂猿的鸣叫,以解决大规模声学数据分析的瓶颈问题 采用开源深度学习框架自动检测特定物种的鸣叫,显著减少分析时间,且检测结果与人工标注无显著差异 未来需要将该模型应用于长期声学数据集以了解鸣叫活动的时空变化 开发一个自动检测濒危物种鸣叫的深度学习框架,以促进声学监测 婆罗洲白须长臂猿(Hylobates albibarbis)的鸣叫 bioacoustics NA deep learning neural network audio recordings 90小时的手动标注音频记录 NA NA NA NA
188 2025-04-03
A systematic review of the application of machine learning techniques to ultrasound tongue imaging analysis
2024-09-01, The Journal of the Acoustical Society of America IF:2.1Q1
review 本文系统回顾了机器学习技术在超声舌成像分析中的应用 深入探讨了深度学习在超声舌图像序列分析中的应用潜力,特别是在克服斑点噪声和视野遮挡方面的优势 未提及具体实验验证或实际应用效果的局限性 评估机器学习技术在超声舌成像分析中的研究现状和发展趋势 超声舌图像帧序列(UTIFs) machine learning NA B-mode ultrasound deep learning image NA NA NA NA NA
189 2025-10-07
Computer Vision Identification of Trachomatous Inflammation-Follicular Using Deep Learning
2024-Sep-20, Cornea IF:1.9Q2
研究论文 本研究开发了一种基于深度学习的计算机视觉系统,用于自动识别沙眼性炎症-滤泡(TF) 首次将MobileNetV3大型深度卷积神经网络应用于沙眼筛查,实现了接近人类专家水平的TF分类性能 需要在不同TF患病率的多样化人群中进行进一步验证才能大规模实施 开发机器学习模型以降低沙眼调查成本并提高可靠性 0-9岁儿童的睑结膜照片 计算机视觉 沙眼 深度学习 CNN 图像 11,358名儿童的56,725张睑结膜照片 NA MobileNetV3 large AUC, F1分数, 准确率, 灵敏度, 特异性 NA
190 2024-09-25
Construction of Risk Prediction Model of Type 2 Diabetic Kidney Disease Based on Deep Learning (Diabetes Metab J 2024;48:771-9)
2024-09, Diabetes & metabolism journal IF:6.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
191 2024-08-07
Comment on 'Deep learning-assisted detection and segmentation of intracranial hemorrhage in noncontrast computed tomography scans of acute stroke patients: a systematic review and meta-analysis'
2024-Sep-01, International journal of surgery (London, England)
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
192 2025-10-07
Effect of childhood atropine treatment on adult choroidal thickness using sequential deep learning-enabled segmentation
2024 Sep-Oct, Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
研究论文 本研究使用序列深度学习分割技术评估儿童期接受阿托品治疗的成人脉络膜厚度变化 首次采用序列深度学习分割方法分析儿童期阿托品治疗对成人脉络膜厚度的长期影响 观察性研究设计无法确定因果关系,样本量相对有限 评估儿童期阿托品治疗对成人脉络膜厚度的长期影响 接受儿童期阿托品治疗的成人近视患者 数字病理学 近视 扫频源光学相干断层扫描 深度学习 医学影像 422只眼睛(94只无阿托品暴露,328只有儿童期阿托品暴露) NA 序列深度学习分割模型 置信区间,P值,比值比 NA
193 2024-09-10
Validation of a fully automated deep learning-enabled solution for CCTA atherosclerotic plaque and stenosis quantification in a diverse real-world cohort
2024 Sep-Oct, Journal of cardiovascular computed tomography IF:5.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
194 2025-10-07
A Deep Learning Model for Predicting Molecular Subtype of Breast Cancer by Fusing Multiple Sequences of DCE-MRI From Two Institutes
2024-09, Academic radiology IF:3.8Q1
研究论文 开发深度学习模型通过融合两个机构的DCE-MRI多序列数据预测乳腺癌分子亚型 提出多分支卷积神经网络架构,采用外观变换技术缓解小数据和类别不平衡问题,并探索不同ROI和融合策略 样本量相对有限,部分亚型预测结果未达到统计学显著性 评估深度学习在利用DCE-MRI预测乳腺癌分子亚型方面的性能 乳腺癌患者 医学影像分析 乳腺癌 DCE-MRI CNN, CLSTM, MBCNN 医学影像 366例乳腺癌患者(训练集292例,验证集49例,测试集25例) NA 多分支卷积神经网络 AUC, 准确率 NA
195 2025-10-07
Develop and Validate a Nomogram Combining Contrast-Enhanced Spectral Mammography Deep Learning with Clinical-Pathological Features to Predict Neoadjuvant Chemotherapy Response in Patients with ER-Positive/HER2-Negative Breast Cancer
2024-09, Academic radiology IF:3.8Q1
研究论文 开发并验证结合对比增强光谱乳腺摄影深度学习与临床病理特征的列线图,用于预测ER阳性/HER2阴性乳腺癌患者的新辅助化疗反应 首次将CESM深度学习特征与临床病理特征结合构建预测新辅助化疗反应的列线图 回顾性研究设计,样本量相对有限(265例患者) 预测ER阳性/HER2阴性乳腺癌患者的新辅助化疗反应 ER阳性/HER2阴性乳腺癌患者 数字病理 乳腺癌 对比增强光谱乳腺摄影(CESM) 深度学习,逻辑回归 医学影像(低能量和减影CESM图像),临床病理数据 265例乳腺癌患者,按4:1比例分为训练集和测试集 PyTorch ResNet34 ROC曲线下面积,准确率,特异性,召回率,阴性预测值,阳性预测值,平衡准确率,F1分数,决策曲线分析 NA
196 2025-03-16
Deep-learning generated B-line score mirrors clinical progression of disease for patients with heart failure
2024-Sep-16, The ultrasound journal
研究论文 本研究探讨了深度学习算法生成的B线严重程度评分与肺充血和疾病严重程度之间的关系,并评估了治疗过程中评分的变化 利用深度学习算法生成B线评分,为临床提供了一种客观评估肺充血和疾病严重程度的方法 B线评分与Rothman指数无显著关联,可能限制了其在某些临床评估中的应用 确定深度学习生成的B线评分是否与肺充血和疾病严重程度相关,并评估治疗过程中的评分变化 疑似充血性心力衰竭的患者 数字病理学 心血管疾病 深度学习 深度学习算法 超声图像 110名独特受试者(3379个超声片段) NA NA NA NA
197 2025-03-14
Bibliometric analysis of ophthalmic OCT and OCT angiography research trends over the past 20 years
2024-Sep-09, International ophthalmology IF:1.4Q3
研究论文 本文对过去20年眼科OCT和OCTA研究的文献计量学分析进行了全面回顾 提供了眼科OCT和OCTA研究的文献计量学分析,揭示了研究趋势和热点 仅基于Web of Science Core Collection的数据,可能未涵盖所有相关文献 分析眼科OCT和OCTA研究的发展趋势和热点 眼科OCT和OCTA相关的研究文献 数字病理学 眼科疾病 OCT, OCTA NA 文献数据 20,817篇文章,48,160位作者,106个国家 NA NA NA NA
198 2025-03-13
Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome
2024-Sep-18, medRxiv : the preprint server for health sciences
研究论文 本文提出了一种在自由呼吸动态MRI中自动分割儿科胸廓功能不全综合征患者半膈肌的方法 利用深度学习技术(如Path Aggregation Network、Dual Attention Network、Dense-Net、Residual-Net、GoogleNet和Recurrent Neural Network)进行半膈肌的识别、描绘和分离,解决了低分辨率、运动模糊、对比度分辨率不佳等挑战 研究主要针对胸廓功能不全综合征(TIS)患者,可能不适用于其他疾病或正常人群 开发一种自动分割方法,用于分析胸廓功能不全综合征患者的半膈肌运动,以支持手术规划和治疗效果评估 儿科胸廓功能不全综合征患者的半膈肌 数字病理学 胸廓功能不全综合征 动态磁共振成像(dMRI) Path Aggregation Network, Dual Attention Network, Dense-Net, Residual-Net, GoogleNet, Recurrent Neural Network 4D图像 100个3D测试图像和约430个3D图像用于模型构建 NA NA NA NA
199 2025-10-07
Deep learning-based arterial subtraction images improve the detection of LR-TR algorithm for viable HCC on extracellular agents-enhanced MRI
2024-09, Abdominal radiology (New York)
研究论文 本研究探讨基于深度学习的动脉减影图像在细胞外对比剂增强MRI上使用LR-TR算法评估肝细胞癌存活性的价值 首次将深度学习生成的动脉减影图像与LR-TR算法结合,显著提高了存活肝细胞癌的检测灵敏度 回顾性研究设计,样本量相对有限(286个观察对象) 评估深度学习动脉减影图像对LR-TR算法检测存活肝细胞癌性能的改善作用 接受局部治疗的肝细胞癌患者 医学影像分析 肝细胞癌 细胞外对比剂增强MRI,数字减影肝动脉造影 深度学习 医学影像 105名患者的286个观察对象 NA NA 灵敏度,准确率,特异性,AUC,观察者间一致性 NA
200 2025-10-07
Deep learning in magnetic resonance enterography for Crohn's disease assessment: a systematic review
2024-09, Abdominal radiology (New York)
系统综述 评估深度学习在磁共振肠道造影中对克罗恩病评估作用的研究进展 首次系统综述深度学习在磁共振肠道造影中应用于克罗恩病评估的多种应用场景 大多数研究为初步回顾性研究,且至少在一个类别中存在高偏倚风险 评估深度学习在改善克罗恩病磁共振肠道造影评估中的作用 克罗恩病患者 医学影像分析 克罗恩病 磁共振肠道造影 深度学习 医学影像 468名受试者 NA NA NA NA
回到顶部