本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 201 | 2025-10-07 |
CTLESS: A scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT
2024-Sep-12, ArXiv
PMID:39314501
|
研究论文 | 开发了一种基于散射窗口投影和深度学习的无传输扫描衰减补偿方法用于心肌灌注SPECT成像 | 首次提出使用散射能量窗口投影和深度学习网络实现无需CT扫描的SPECT衰减补偿 | 回顾性研究,需要进一步临床评估验证 | 开发无CT扫描的心肌灌注SPECT衰减补偿方法以降低辐射剂量和成本 | 心肌灌注SPECT/CT应力成像数据 | 医学影像分析 | 心血管疾病 | SPECT/CT成像,散射能量窗口投影 | 深度学习 | 医学影像 | 匿名临床SPECT/CT应力心肌灌注图像 | NA | 多通道输入多解码器网络 | AUC,均方根误差,结构相似性指数 | NA |
| 202 | 2025-10-07 |
CryoTEN: Efficiently Enhancing Cryo-EM Density Maps Using Transformers
2024-Sep-11, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.06.611715
PMID:39314387
|
研究论文 | 提出一种基于三维U-Net风格Transformer的CryoTEN方法,用于高效增强冷冻电镜密度图质量 | 首次将三维U-Net风格Transformer架构应用于冷冻电镜密度图增强,在保持高质量的同时运行速度比现有最佳深度学习方法快10倍以上且GPU内存需求更低 | NA | 开发高效算法以提升冷冻电镜密度图质量,从而改善蛋白质结构建模 | 冷冻电镜密度图 | 计算机视觉 | NA | 冷冻电镜 | Transformer | 三维密度图 | 1,295个冷冻电镜图作为训练集,150个独立测试图 | NA | U-Net, Transformer | 密度图质量提升,蛋白质结构建模质量 | GPU |
| 203 | 2025-10-07 |
Automatic Quantitative Assessment of Muscle Strength Based on Deep Learning and Ultrasound
2024-09, Ultrasonic imaging
IF:2.5Q2
DOI:10.1177/01617346241255590
PMID:38881032
|
研究论文 | 提出一种基于深度学习和超声技术的肌肉力量自动定量评估方法 | 首次将深度学习与超声技术结合实现肌肉力量的自动化评估,减少对操作者专业经验的依赖 | 仅针对肱二头肌进行测试,样本类型和肌肉种类有限 | 开发自动化的肌肉力量评估方法以辅助运动员康复和力量训练 | 多名运动员在不同力量水平下的肱二头肌 | 计算机视觉 | NA | B型超声 | 深度学习模型 | 超声图像 | 多名运动员的肱二头肌超声数据 | NA | NA | 准确率 | NA |
| 204 | 2025-10-07 |
Deep learning-based multi-parametric magnetic resonance imaging (mp-MRI) nomogram for predicting Ki-67 expression in rectal cancer
2024-09, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04232-9
PMID:38489038
|
研究论文 | 开发基于深度学习的多参数磁共振成像列线图预测直肠癌Ki-67表达水平 | 首次结合深度学习特征与临床特征构建多中心验证的列线图模型 | 回顾性研究设计,样本量有限(491例) | 预测直肠癌Ki-67表达状态 | 直肠癌患者 | 医学影像分析 | 直肠癌 | 多参数磁共振成像(mp-MRI) | 深度学习模型 | 医学影像 | 491例来自两个中心的直肠癌患者 | NA | NA | AUC, 校准曲线, 决策曲线, 临床影响曲线 | NA |
| 205 | 2025-10-07 |
CD4+ T cells exhibit distinct transcriptional phenotypes in the lymph nodes and blood following mRNA vaccination in humans
2024-Sep, Nature immunology
IF:27.7Q1
DOI:10.1038/s41590-024-01888-9
PMID:39164479
|
研究论文 | 通过单细胞转录组学分析mRNA疫苗接种后人类CD4+ T细胞在淋巴结和血液中的转录表型差异 | 首次使用深度学习反向表位定位方法Trex预测抗原特异性,并比较疫苗接种与自然感染后CD4 T细胞表型差异 | 样本量相对有限,仅分析了1277个棘突蛋白特异性CD4 T细胞 | 研究mRNA疫苗接种后CD4 T细胞在不同组织部位的转录表型特征 | 接种BNT162b2 mRNA疫苗和SARS-CoV-2感染个体的CD4 T细胞 | 生物医学 | 传染病 | 单细胞转录组学, 深度学习反向表位定位 | 深度学习 | 单细胞转录组数据 | 1277个棘突蛋白特异性CD4 T细胞(包含238个通过Trex定义) | NA | NA | NA | NA |
| 206 | 2025-10-07 |
Artificial intelligence applied to magnetic resonance imaging reliably detects the presence, but not the location, of meniscus tears: a systematic review and meta-analysis
2024-Sep, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10625-7
PMID:38386028
|
系统评价和荟萃分析 | 通过系统评价和荟萃分析评估卷积神经网络在MRI中检测半月板撕裂的准确性 | 首次通过荟萃分析比较AI模型在检测半月板撕裂存在与定位方面的性能差异 | 研究存在显著的异质性(I²=79%),需要更多标准化报告和外部验证 | 评估和比较卷积神经网络在半月板撕裂诊断中的准确性 | 半月板撕裂患者的磁共振成像 | 计算机视觉 | 骨科疾病 | 磁共振成像 | CNN | 图像 | 13,467名患者和57,551张图像 | NA | NA | 敏感性,特异性,AUC | NA |
| 207 | 2025-03-05 |
Joint trajectory inference for single-cell genomics using deep learning with a mixture prior
2024-Sep-10, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2316256121
PMID:39226366
|
研究论文 | 本文介绍了一种名为VITAE的统计方法,用于单细胞基因组学中的轨迹推断,结合了潜在层次混合模型和变分自编码器 | VITAE方法整合了潜在层次混合模型和变分自编码器,提高了轨迹推断的准确性和数据整合能力,并提供了细胞投影的不确定性量化 | 现有工具缺乏一致的统计模型和可靠的不确定性量化,限制了其效用和鲁棒性 | 提高单细胞测序数据集中细胞发育路径分析的准确性和数据整合能力 | 单细胞测序数据集中的细胞 | 机器学习 | NA | 单细胞RNA测序 | 变分自编码器(VAE) | 单细胞RNA测序数据 | 三个不同的小鼠新皮质单细胞RNA测序数据集 | NA | NA | NA | NA |
| 208 | 2025-03-05 |
Letter to the editor: Prospective analysis of STRATAFIX™ symmetric PDS plus suture for fascial closure in spinal surgery: a pilot study
2024-Sep-04, Neurosurgical review
IF:2.5Q1
DOI:10.1007/s10143-024-02803-4
PMID:39230765
|
研究论文 | 本研究评估了STRATAFIX™对称倒刺缝合线在脊柱手术中与传统编织可吸收缝合线的效果比较 | 首次在脊柱手术中比较STRATAFIX™对称倒刺缝合线与传统缝合线的效果,并探讨AI模型在缝合训练中的应用 | 样本量小(20例患者),随访时间短(6个月),限制了结果的普遍性 | 评估STRATAFIX™对称倒刺缝合线在脊柱手术中的效果,并探讨AI在缝合训练中的应用 | 脊柱手术患者 | 数字病理 | 脊柱损伤 | 缝合技术 | Xception深度学习模型 | 临床数据 | 20例患者 | NA | NA | NA | NA |
| 209 | 2025-03-05 |
Network signatures define consciousness state during focal seizures
2024-Sep, Epilepsia
IF:6.6Q1
DOI:10.1111/epi.18074
PMID:39056406
|
研究论文 | 本研究通过脑电图数据分析了局灶性癫痫发作期间的网络状态,揭示了意识丧失的机制 | 首次全面评估了局灶性癫痫发作期间的网络状态,并发现FIASs的网络变化与深度睡眠相似 | 样本量相对较小,且仅使用了SEEG和fMRI数据 | 研究局灶性癫痫发作期间意识丧失的机制 | 74名患有局灶性癫痫的患者 | 神经科学 | 癫痫 | 立体脑电图(SEEG)、功能磁共振成像(fMRI) | 卷积神经网络(CNN) | 脑电图数据 | 74名患者 | NA | NA | NA | NA |
| 210 | 2025-10-07 |
Prediction and design of transcriptional repressor domains with large-scale mutational scans and deep learning
2024-Sep-24, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.21.614253
PMID:39386603
|
研究论文 | 本研究通过大规模突变扫描和深度学习模型预测和设计转录抑制结构域 | 开发了整合序列、结构和生化表征的深度学习模型TENet,能够准确预测抑制活性并指导合成调控蛋白的精确设计 | 模型在具有不同同源性的结构域之间的泛化能力仍需系统测试 | 研究序列变异如何影响转录抑制结构域的功能活性 | 人类细胞中50多个抑制结构域的115,000个变异序列 | 机器学习 | Saethre-Chotzen综合征,Rett综合征 | 高通量突变扫描,深度学习 | 深度学习 | 序列数据,结构数据,生化数据 | 115,000个变异序列 | NA | TENet | NA | NA |
| 211 | 2025-10-07 |
Discovery and characterization of novel FGFR1 inhibitors in triple-negative breast cancer via hybrid virtual screening and molecular dynamics simulations
2024-09, Bioorganic chemistry
IF:4.5Q1
DOI:10.1016/j.bioorg.2024.107553
PMID:38901279
|
研究论文 | 本研究通过混合虚拟筛选和分子动力学模拟发现并表征了新型FGFR1抑制剂,用于三阴性乳腺癌治疗 | 开发了结合深度学习与分子对接的混合虚拟筛选方法,发现了具有纳摩尔级抑制活性的新型化合物 | 研究主要基于计算机模拟和体外实验,尚未进行体内动物模型验证 | 开发针对三阴性乳腺癌FGFR1靶点的有效抑制剂 | FGFR1蛋白及其V561M突变体,三阴性乳腺癌细胞系 | 计算生物学 | 三阴性乳腺癌 | 虚拟筛选,分子对接,分子动力学模拟,HTRF生物测定 | 深度学习,分子对接 | 分子结构数据,生物活性数据 | NA | KarmaDock, Schrödinger | NA | IC50值 | NA |
| 212 | 2025-10-07 |
An initial game-theoretic assessment of enhanced tissue preparation and imaging protocols for improved deep learning inference of spatial transcriptomics from tissue morphology
2024-Sep-23, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae476
PMID:39367648
|
研究论文 | 通过改进组织制备和成像方案提升基于深度学习的空间转录组学形态学推断性能 | 首次从博弈论角度评估组织制备和成像方案对空间转录组学深度学习模型性能的影响,提出临床级标准化流程 | 研究样本量较小(仅13例结直肠癌患者),需要更大规模验证 | 评估改进的组织处理与成像方案对深度学习模型从组织形态推断空间转录组性能的影响 | 结直肠癌患者的组织样本 | 数字病理 | 结直肠癌 | 空间转录组学,自动化H&E染色,全玻片成像 | CNN | 组织图像 | 13例病理T分期III期结直肠癌患者 | TensorFlow | Inceptionv3 | 数据Shapley值 | NA |
| 213 | 2025-10-07 |
Deep autoencoder-based behavioral pattern recognition outperforms standard statistical methods in high-dimensional zebrafish studies
2024-Sep, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1012423
PMID:39255309
|
研究论文 | 本研究开发了一种基于深度自编码器的行为模式识别方法,用于分析斑马鱼高维行为数据并识别环境毒物引起的异常行为 | 使用半监督深度自编码器提取斑马鱼正常行为特征,相比传统统计方法能识别更多毒物诱导的异常行为模式 | NA | 开发更有效的行为模式识别方法以检测环境毒物对斑马鱼神经行为的影响 | 斑马鱼幼虫的行为数据 | 机器学习 | 神经毒性疾病 | 行为分析 | 深度自编码器 | 行为数据 | NA | NA | 自编码器 | NA | NA |
| 214 | 2025-10-07 |
AESurv: autoencoder survival analysis for accurate early prediction of coronary heart disease
2024-Sep-23, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae479
PMID:39323093
|
研究论文 | 开发了一种基于自编码器的生存分析模型AESurv,用于利用DNA甲基化和临床特征准确预测冠心病发病时间 | 首次将自编码器与生存分析相结合,通过低维表征学习处理高维DNA甲基化数据,在冠心病预测中实现了优于传统生存分析模型的性能 | 研究仅在美国印第安人群和绝经后女性两个特定队列中进行验证,模型在其他人群中的普适性需要进一步验证 | 开发准确的冠心病时间-事件预测模型以支持早期干预策略 | 美国印第安成年人(Strong Heart Study队列)和绝经后女性(Women's Health Initiative队列) | 机器学习 | 心血管疾病 | DNA甲基化分析 | 自编码器 | DNA甲基化数据和临床特征数据 | 两个前瞻性队列研究:Strong Heart Study和Women's Health Initiative | NA | 自编码器 | C指数, 时间-事件平均AUROC | NA |
| 215 | 2025-10-07 |
scMGATGRN: a multiview graph attention network-based method for inferring gene regulatory networks from single-cell transcriptomic data
2024-Sep-23, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae526
PMID:39417321
|
研究论文 | 提出基于多视图图注意力网络的scMGATGRN方法,用于从单细胞转录组数据推断基因调控网络 | 首次将多视图图注意力网络应用于基因调控网络推断,能够同时利用局部特征信息和高阶邻居特征信息 | 未明确说明模型在处理大规模数据时的计算效率限制 | 开发更准确的基因调控网络推断方法 | 基因调控网络 | 机器学习 | NA | 单细胞RNA测序 | 图注意力网络 | 单细胞转录组数据 | 7个基准单细胞RNA测序数据集,来自5个细胞系(2个人类,3个小鼠) | NA | GAT, 多视图注意力机制 | NA | NA |
| 216 | 2025-02-21 |
ERABiLNet: enhanced residual attention with bidirectional long short-term memory
2024-09-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-71299-1
PMID:39232053
|
研究论文 | 本文提出了一种新的深度学习模型ERABiLNet,用于从MRI图像中早期检测阿尔茨海默病 | 提出了增强残差注意力与双向长短期记忆网络(ERABiLNet),通过结合残差注意力网络和注意力机制的双向LSTM,提高了阿尔茨海默病的检测性能 | 未提及具体的数据集规模或外部验证结果,可能影响模型的泛化能力 | 开发一种深度学习模型,用于从MRI图像中早期检测阿尔茨海默病 | 阿尔茨海默病患者的MRI图像 | 计算机视觉 | 老年病 | 深度学习 | ERABiLNet(结合残差注意力网络和双向LSTM) | 图像 | 未提及具体样本数量 | NA | NA | NA | NA |
| 217 | 2024-09-20 |
Label-free and rapid mechanics of single cells under high-density co-culture conditions by deep learning image recognition-assisted atomic force microscopy
2024-Sep-18, Acta biochimica et biophysica Sinica
IF:3.3Q1
DOI:10.3724/abbs.2024158
PMID:39295485
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 218 | 2025-10-07 |
Single unit electrophysiology recordings and computational modeling can predict octopus arm movement
2024-Sep-19, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.13.612676
PMID:39345497
|
研究论文 | 通过章鱼单单元电生理记录和计算建模预测章鱼手臂运动 | 首次结合单单元电生理记录与计算模型预测章鱼手臂运动类型,揭示了运动电路产生丰富运动类型的实时机制 | 研究仅针对前神经索,未涵盖整个神经系统;模型预测精度仍有提升空间 | 探索章鱼简化神经系统的运动控制原理并改进脑机接口设备 | 章鱼前神经索和手臂运动 | 计算神经科学 | NA | 单单元电生理记录 | 深度学习模型 | 电生理信号,运动记录 | NA | NA | NA | 预测置信度(88.64%,75.45%) | NA |
| 219 | 2025-02-16 |
Flexible use of conserved motif vocabularies constrains genome access in cell type evolution
2024-Sep-06, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.03.611027
PMID:39282369
|
研究论文 | 本文通过整合单核多组学测序和深度学习技术,探讨了细胞类型进化中基因组可及性的约束机制 | 揭示了细胞类型家族间基因组可及性的保守性,并发现不同物种间细胞类型关系的特异性相互作用并不保守 | 研究结果主要基于早期分支动物,如扁形动物和刺胞动物,可能不适用于所有生物 | 探讨细胞类型多样化在进化过程中如何受到基因组可及性的约束 | 细胞类型家族及其基因组可及性 | 基因组学 | NA | 单核多组学测序,深度学习 | 深度学习模型 | 基因组序列数据 | 涉及多个早期分支动物物种的细胞类型 | NA | NA | NA | NA |
| 220 | 2025-10-07 |
Generative artificial intelligence in ophthalmology: current innovations, future applications and challenges
2024-Sep-20, The British journal of ophthalmology
DOI:10.1136/bjo-2024-325458
PMID:38925907
|
综述 | 探讨生成式人工智能在眼科领域的当前创新、未来应用与挑战 | 系统阐述生成对抗网络和扩散模型在眼科影像生成中的应用,以及多模态基础模型在眼科的多场景应用潜力 | 该技术仍处于发展初期,存在数据偏差、安全问题和临床实施挑战 | 分析生成式AI在眼科领域的应用前景与技术挑战 | 眼科医疗影像与相关文本数据 | 计算机视觉, 自然语言处理 | 眼科疾病 | 生成对抗网络, 扩散模型, 多模态基础模型 | GAN, 扩散模型 | 图像, 文本, 视频 | NA | NA | NA | NA | NA |