深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202409-202409] [清除筛选条件]
当前共找到 1168 篇文献,本页显示第 281 - 300 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
281 2024-11-04
GGN-GO: geometric graph networks for predicting protein function by multi-scale structure features
2024-Sep-23, Briefings in bioinformatics IF:6.8Q1
研究论文 提出了一种几何图网络(GGN-GO)用于通过多尺度结构特征预测蛋白质功能 通过几何向量感知器将原子和残基级别的多尺度几何结构特征转换为向量表示,并引入图注意力池化层和对比学习增强图表示的判别能力 未提及 解决传统方法在蛋白质功能注释中的成本和时间问题,以及现有深度学习方法在捕捉细粒度几何结构特征和长程依赖性方面的不足 蛋白质功能预测 机器学习 NA 几何图网络(GGN-GO) 图卷积网络(GCN) 蛋白质结构数据 未提及
282 2024-11-04
Graph contrastive learning as a versatile foundation for advanced scRNA-seq data analysis
2024-Sep-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本文提出了一种基于图对比学习的新框架scSimGCL,用于单细胞RNA测序数据的细胞聚类分析 scSimGCL结合了细胞-细胞图结构和对比学习,显著提升了细胞聚类的性能 NA 开发一种简单而有效的框架,用于生成高质量的表示,以支持稳健的细胞聚类 单细胞RNA测序数据中的细胞聚类 机器学习 NA 图对比学习 图神经网络 单细胞RNA测序数据 涉及模拟和真实单细胞RNA测序数据集
283 2024-11-04
Radiomics in breast cancer: Current advances and future directions
2024-Sep-17, Cell reports. Medicine
综述 本文综述了放射组学在乳腺癌中的应用现状及未来发展方向 本文探讨了放射组学在乳腺癌研究中的创新应用,特别是放射多组学研究如何弥合表型和微观尺度信息之间的差距 本文指出了当前放射组学模型在临床应用中存在的不足,并讨论了其原因 总结放射组学在预测临床病理指标和临床结果中的应用,并提出未来研究方向 乳腺癌及其临床应用中的放射组学模型 机器学习 乳腺癌 放射组学 NA 图像 NA
284 2024-11-02
MicroHDF: predicting host phenotypes with metagenomic data using a deep forest-based framework
2024-Sep-23, Briefings in bioinformatics IF:6.8Q1
研究论文 提出了一种基于深度森林框架的MicroHDF方法,用于利用宏基因组数据预测宿主表型 设计了一种级联深度森林单元,用于处理样本类别不平衡和高维特征问题 NA 提高利用宏基因组数据预测宿主表型的准确性和可靠性 炎症性肠病和肝硬化等六种不同疾病 机器学习 炎症性肠病 深度森林 深度森林 宏基因组数据 13个公开数据集
285 2024-10-30
Coati optimization algorithm based Deep Convolutional Forest method for prediction of atmospheric and oceanic parameters
2024-Sep-27, Scientific reports IF:3.8Q1
研究论文 提出了一种基于Coati优化算法的深度卷积森林方法,用于预测大气和海洋参数 引入Coati优化算法训练深度卷积森林分类器,以提高海洋表面温度异常预测的精度 NA 提高海洋表面温度预测的精度,特别是在高精度区域 海洋表面温度异常及相关变量 机器学习 NA 深度卷积森林 深度卷积森林 数值数据 历史数据范围为1到10天,涉及六个不同地点
286 2024-10-30
Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders
2024-Sep-26, bioRxiv : the preprint server for biology
研究论文 提出了一种基于深度自动编码器的异常检测系统DeepAutoCoV,用于预测SARS-CoV-2未来主导的变异株 使用深度学习方法进行无监督异常检测,能够提前数周预测SARS-CoV-2的主导变异株,并提供可解释的结果 NA 预测SARS-CoV-2未来主导的变异株,优化公共卫生干预策略 SARS-CoV-2的变异株及其在GISAID数据库中的频率 机器学习 COVID-19 深度学习 自动编码器 序列数据 超过1600万条Spike蛋白序列,采样时间约为4年
287 2024-10-30
Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders
2024-Sep-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本文提出了一种基于深度自动编码器的异常检测系统DeepAutoCoV,用于预测SARS-CoV-2未来主导的变异株 DeepAutoCoV能够以极低的频率(0.01%-3%)成功标记未来主导的变异株,并提供4-17周的中位数提前时间,预测效果比基线方法好5到25倍 NA 预测SARS-CoV-2未来主导的变异株 SARS-CoV-2的变异株及其主导趋势 机器学习 COVID-19 深度学习 自动编码器 基因序列 超过1600万条Spike蛋白序列,采样时间约为4年
288 2024-10-30
Biotechnological studies towards improvement of finger millet using multi-omics approaches
2024-Sep-02, Functional & integrative genomics IF:3.9Q1
研究论文 本文探讨了利用多组学方法改进手指谷子的生物技术研究 本文首次系统性地结合多组学技术和人工智能技术,以加速对手指谷子的研究 目前对手指谷子的多组学研究仍然有限,缺乏现代工具 旨在通过多组学方法改进手指谷子的遗传资源,以应对全球饥饿和环境挑战 手指谷子 NA NA 多组学技术 NA 基因组数据 NA
289 2024-10-30
Ultra-low dose chest CT with silver filter and deep learning reconstruction significantly reduces radiation dose and retains quantitative information in the investigation and monitoring of lymphangioleiomyomatosis (LAM)
2024-Sep, European radiology IF:4.7Q1
研究论文 研究银滤波器和深度学习重建算法在淋巴管平滑肌瘤病(LAM)患者胸部CT扫描中降低辐射剂量的效果 使用银滤波器和深度学习重建算法显著降低了胸部CT扫描的辐射剂量,同时保持了量化信息的准确性 研究样本量较小,仅在一个中心进行,且仅针对LAM患者 探讨银滤波器和深度学习重建算法在LAM患者胸部CT扫描中降低辐射剂量的可行性 LAM患者的胸部CT扫描图像 计算机视觉 肺部疾病 深度学习重建 深度学习模型 图像 60名LAM患者
290 2024-10-30
Automated inversion time selection for late gadolinium-enhanced cardiac magnetic resonance imaging
2024-Sep, European radiology IF:4.7Q1
研究论文 开发并分享一种深度学习方法,用于从多厂商、多机构和多场强的反转扫描序列中准确识别最佳反转时间 开发了一种结合卷积神经网络和长短期记忆网络的深度学习模型,能够在多厂商数据上高精度地识别最佳反转时间,并应用于未见过的外部数据 模型在训练数据中占比较高的厂商数据上表现最佳,不同厂商的性能存在差异 开发一种自动选择最佳反转时间的工具,以提高晚期钆增强心脏磁共振成像的效率和一致性 多厂商、多机构和多场强的反转扫描序列 计算机视觉 NA 深度学习 卷积神经网络和长短期记忆网络 图像 1136例1.5-T和3-T心脏MRI检查
291 2024-10-30
Knee landmarks detection via deep learning for automatic imaging evaluation of trochlear dysplasia and patellar height
2024-Sep, European radiology IF:4.7Q1
研究论文 本文开发并验证了一种基于深度学习的自动测量膝关节磁共振成像中髌股不稳定指数的方法 提出了一种基于U-Net网络的自动检测膝关节标志点的方法,用于评估髌骨高度和滑车发育不良 NA 开发和验证一种基于深度学习的自动测量髌股不稳定指数的方法 膝关节磁共振成像中的髌骨高度和滑车发育不良 计算机视觉 膝关节疾病 深度学习 U-Net 图像 763个膝关节MRI切片,来自95名患者,标注了3393个解剖标志点
292 2024-10-30
Utilizing fully-automated 3D organ segmentation for hepatic steatosis assessment with CT attenuation-based parameters
2024-Sep, European radiology IF:4.7Q1
研究论文 研究利用全自动3D器官分割技术评估肝脂肪变性,通过CT衰减参数进行分析 本文创新性地使用全自动3D器官分割技术来提取CT衰减参数,用于评估肝脂肪变性 研究为回顾性分析,样本量有限,且未涵盖所有可能的临床情况 探讨全自动3D器官分割技术在评估肝脂肪变性中的临床应用 研究对象为362名成年潜在活体肝移植供体,分析其腹部CT扫描和磁共振波谱-质子密度脂肪分数(MRS-PDFF) 数字病理学 肝病 CT扫描 深度学习 图像 362名成年潜在活体肝移植供体
293 2024-10-30
Artificial intelligence-assisted double reading of chest radiographs to detect clinically relevant missed findings: a two-centre evaluation
2024-Sep, European radiology IF:4.7Q1
研究论文 评估一种人工智能辅助的双重读片系统,用于检测常规胸部X光片中临床相关的遗漏发现 使用人工智能软件作为报告授权后的二次读片,以减少诊断错误,同时不中断放射科医生的读片流程 人工智能检测到的差异数量较多,需要放射科医生进行相关性评估 评估人工智能辅助的双重读片系统在检测常规胸部X光片中临床相关遗漏发现的有效性 胸部X光片及其放射科报告 计算机视觉 NA 深度学习和自然语言处理算法 深度学习 图像 25,104张胸部X光片,涉及21,039名患者(平均年龄61.1岁,标准差16.2,其中10,436名为男性)
294 2024-10-30
A predictive approach for host-pathogen interactions using deep learning and protein sequences
2024-Sep, Virusdisease
研究论文 本文提出了一种利用深度学习和蛋白质序列预测宿主-病原体相互作用的方法 使用深度学习方法和mMKGap算法提取特征,结合Negatome数据库生成负样本,显著提高了预测准确性 NA 开发一种高效且准确的计算方法来预测宿主-病原体相互作用 宿主-病原体相互作用 机器学习 NA 深度学习 CNN 蛋白质序列 三个平衡的人类-病原体数据集,采用10折交叉验证
295 2024-10-30
Radar-Based Fall Detection: A Survey
2024-Sep, IEEE robotics & automation magazine IF:5.4Q1
综述 本文深入分析了基于雷达的跌倒检测技术,重点介绍了微多普勒、距离多普勒和距离多普勒角度技术 强调了深度学习在处理复杂特征和大型非结构化数据集方面的优势,并探讨了其在雷达跌倒检测中的应用潜力 需要明确跌倒的定义和适当的检测标准,并考虑多种影响因素 旨在填补当前研究的空白,并强调未来研究策略和实际应用的可能性 基于雷达的跌倒检测技术及其在老年人等高风险人群中的应用 计算机视觉 老年病 雷达技术 CNN和RNN 雷达信号 74篇自2000年以来发表的研究文章
296 2024-10-29
3D Light-Direction Sensor Based on Segmented Concentric Nanorings Combined with Deep Learning
2024-Sep-30, Micromachines IF:3.0Q2
研究论文 本文提出了一种基于分段同心纳米环结构和深度学习的3D光方向传感器,能够在微米级设备尺度上实现高精度的光方向检测 该传感器通过分段同心纳米环结构实现对入射光的三维方向检测,并利用深度学习解决数据混叠问题,扩展了传感范围 NA 开发一种高精度、超薄的光方向检测设备,推动机器视觉和交互技术的发展 3D光方向传感器的设计与实现 机器学习 NA 深度学习 NA 模拟数据 NA
297 2024-10-29
[Clinical Validation Study of Deep Learning-Generated Magnetic Resonance Images]
2024-Sep-30, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation
研究论文 本研究利用深度学习图像生成算法,从矢状位T1WI和T2WI MR图像生成伪矢状位STIR序列 深度学习生成的STIR序列在图像质量和临床诊断能力上与金标准相当甚至可能超越 NA 验证深度学习生成MR图像的临床有效性 矢状位T1WI和T2WI MR图像以及生成的伪矢状位STIR序列 计算机视觉 NA 深度学习 NA 图像 五种不同组织的ROI
298 2024-10-28
Ensemble Fusion Models Using Various Strategies and Machine Learning for EEG Classification
2024-Sep-29, Bioengineering (Basel, Switzerland)
研究论文 本文提出了五种集成模型用于脑电图(EEG)信号分类,主要分析的神经系统疾病是癫痫 本文提出了五种新的集成模型,分别利用了不同的特征选择和分类技术,如ESCD、I-ICA、GA、HHT和因子分析,以提高EEG信号分类的准确性 本文未详细讨论模型的计算复杂性和训练时间,且未与其他最先进的EEG分类方法进行全面比较 开发和评估用于EEG信号分类的集成模型,以提高神经系统疾病的诊断准确性 脑电图(EEG)信号和癫痫 机器学习 神经系统疾病 集成学习 集成模型 信号 未明确提及具体样本数量
299 2024-10-28
The Application of Deep Learning to Accurately Identify the Dimensions of Spinal Canal and Intervertebral Foramen as Evaluated by the IoU Index
2024-Sep-29, Bioengineering (Basel, Switzerland)
研究论文 本文利用深度学习结合图像处理技术,识别脊髓管和椎间孔的尺寸 本文采用了YOLOv4和Resnet50混合U-Net模型,显著提高了脊髓管和椎间孔尺寸识别的准确性 NA 提高医学影像中脊髓管和椎间孔尺寸识别的准确性 脊髓管和椎间孔的尺寸 计算机视觉 NA 深度学习 YOLOv4, Resnet50混合U-Net 图像 NA
300 2024-10-28
Identification of Anomalies in Lung and Colon Cancer Using Computer Vision-Based Swin Transformer with Ensemble Model on Histopathological Images
2024-Sep-28, Bioengineering (Basel, Switzerland)
研究论文 本文提出了一种基于计算机视觉的Swin Transformer与集成模型相结合的方法,用于在病理图像上识别肺癌和结肠癌的异常 本文创新性地使用了Swin Transformer模型进行特征提取,并结合双向长短期记忆与多头注意力(BiLSTM-MHA)、双深度Q网络(DDQN)和稀疏堆叠自编码器(SSAE)三种深度学习技术进行集成分类 NA 旨在提高肺癌和结肠癌的诊断效率和准确性 肺癌和结肠癌的病理图像 计算机视觉 肺癌 深度学习 Swin Transformer 图像 使用了基准数据集进行广泛的模拟分析
回到顶部