本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61 | 2025-06-19 |
Automated design of multi-target ligands by generative deep learning
2024-09-11, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-52060-8
PMID:39261471
|
research paper | 本文探讨了使用化学语言模型(CLM)生成多靶点配体以设计多药理学的方法 | 利用CLM从小规模微调分子集中学习,成功偏向设计具有与目标对已知配体相似性的药物样分子 | 仅测试了12个CLM设计分子对6个目标对的效果,样本量有限 | 探索生成深度学习模型在设计多靶点配体中的应用 | 多靶点配体 | machine learning | NA | 化学语言模型(CLM) | CLM | 分子字符串表示(如SMILES) | 12个CLM设计分子针对6个目标对 |
62 | 2025-06-19 |
External Testing of a Deep Learning Model to Estimate Biologic Age Using Chest Radiographs
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.230433
PMID:39046324
|
研究论文 | 评估深度学习模型在亚洲人群中预测基于胸部X光片的生物年龄(CXR-Age)的预后价值 | 首次在大型亚洲人群外部测试队列中验证深度学习模型预测的生物年龄与多种生存结果的关联 | 单中心回顾性研究,结果可能受限于特定人群和机构 | 验证基于胸部X光片的深度学习模型预测生物年龄的预后价值 | 50-80岁无症状亚洲人群的胸部X光片 | 数字病理学 | 多种疾病(心血管疾病、肺癌、呼吸系统疾病) | 深度学习 | CNN | 图像(胸部X光片) | 36,924名个体 |
63 | 2025-06-19 |
Artificial Intelligence Outcome Prediction in Neonates with Encephalopathy (AI-OPiNE)
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.240076
PMID:38984984
|
research paper | 开发一种深度学习算法,利用MRI和基本临床数据预测缺氧缺血性脑病新生儿2年神经发育结果 | 使用多序列MRI和基本临床变量训练深度学习分类器,预测新生儿2年神经发育结果 | 样本量相对较小,且仅来自17个机构 | 预测缺氧缺血性脑病新生儿2年神经发育结果 | 患有缺氧缺血性脑病的足月新生儿 | digital pathology | geriatric disease | MRI, diffusion tensor imaging | CNN | image | 414名新生儿(232名男性,182名女性) |
64 | 2025-06-19 |
Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.230601
PMID:38900043
|
research paper | 评估一种自动化深度学习方法在检测腹水并量化其体积方面的性能,研究对象为肝硬化和卵巢癌患者 | 提出了一种基于深度学习的自动化方法,用于腹水的分割和体积量化,与专家评估结果高度一致 | 研究为回顾性研究,可能受到数据选择和标注偏差的影响 | 开发并评估一种自动化深度学习方法,用于腹水的检测和体积量化 | 肝硬化患者和卵巢癌患者的腹部-盆腔CT扫描图像 | digital pathology | 肝硬化和卵巢癌 | 深度学习 | CNN | CT扫描图像 | 共315名患者(NIH-LC 25名,NIH-OV 166名,UofW-LC 124名) |
65 | 2025-06-18 |
Longitudinal deep neural networks for assessing metastatic brain cancer on a large open benchmark
2024-09-17, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-52414-2
PMID:39289405
|
research paper | 该研究开发了一种名为Segmentation-Through-Time的深度神经网络,用于检测和跟踪转移性脑癌,并在一个大型开放基准数据集NYUMets-Brain上取得了最先进的结果 | 提出了Segmentation-Through-Time深度神经网络,明确利用了数据的纵向结构,在小转移瘤(<10 mm)检测和分割方面取得了最先进的结果 | NA | 开发能够检测和跟踪转移性脑癌的工具 | 1,429名癌症患者的影像、临床随访和医疗管理数据 | digital pathology | brain cancer | deep learning | deep neural network | imaging | 1,429名患者 |
66 | 2025-06-18 |
Deep Learning to Detect Intracranial Hemorrhage in a National Teleradiology Program and the Impact on Interpretation Time
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.240067
PMID:39017032
|
研究论文 | 评估人工智能在急性颅内出血检测中的诊断性能及其对放射科医生解读时间和系统效率的影响 | 在大型远程放射学实践中评估AI临床决策支持解决方案的性能,并量化其对放射科医生解读时间和系统效率的影响 | 在高流量、低患病率环境中,误报检查的解读时间延长可能导致系统效率低下,可能超过使用该工具的潜在益处 | 评估AI在急性颅内出血检测中的诊断性能及其对放射科医生解读时间和系统效率的影响 | 61,704例连续非增强头部CT检查 | 数字病理学 | 颅内出血 | 深度学习 | NA | CT图像 | 61,704例非增强头部CT检查 |
67 | 2025-06-18 |
Open Access Data and Deep Learning for Cardiac Device Identification on Standard DICOM and Smartphone-based Chest Radiographs
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.230502
PMID:39017033
|
研究论文 | 开发并评估了一个公开可用的深度学习模型,用于在DICOM和智能手机拍摄的胸部X光片上分割和分类心脏植入电子设备(CIEDs) | 首次提出一个公开可用的深度学习模型,能够同时在传统DICOM和智能手机拍摄的胸部X光片上准确分割和分类CIEDs | 研究为回顾性研究,可能受到数据选择和采集方式的限制 | 开发一个深度学习模型,用于自动识别和分类胸部X光片中的心脏植入电子设备 | 心脏植入电子设备(CIEDs),包括起搏器、心脏除颤器、心脏再同步治疗设备和心脏监测器 | 数字病理 | 心血管疾病 | 深度学习 | U-Net with ResNet-50 backbone | 图像 | 897名患者的2321张胸部X光片,以及使用5部智能手机拍摄的11072张图像 |
68 | 2025-06-18 |
Improving Computer-aided Detection for Digital Breast Tomosynthesis by Incorporating Temporal Change
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.230391
PMID:39140867
|
研究论文 | 开发了一种利用时间信息改进数字乳腺断层合成(DBT)癌症病变检测性能的深度学习算法 | 通过引入PriorNet作为级联深度学习模块,利用额外的生长信息来优化恶性肿瘤的最终概率,从而提高了检测性能 | 研究为回顾性分析,可能受到数据选择和时间的限制 | 提高数字乳腺断层合成(DBT)中癌症病变的计算机辅助检测性能 | 数字乳腺断层合成(DBT)筛查检查中的癌症和非癌症病例 | 计算机视觉 | 乳腺癌 | 深度学习 | PriorNet | 图像 | 973例癌症和7123例非癌症病例 |
69 | 2025-06-18 |
nnU-Net-based Segmentation of Tumor Subcompartments in Pediatric Medulloblastoma Using Multiparametric MRI: A Multi-institutional Study
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.230115
PMID:39166971
|
research paper | 本研究评估了基于nnU-Net的分割模型在儿童髓母细胞瘤多参数MRI上的自动分割性能 | 使用nnU-Net模型进行儿童髓母细胞瘤肿瘤亚区的自动分割,并比较了迁移学习和直接深度学习两种训练策略 | 样本量相对较小(78例),且数据来自三个不同机构,可能存在异质性 | 评估nnU-Net模型在儿童髓母细胞瘤MRI图像上的分割性能 | 儿童髓母细胞瘤患者的多参数MRI图像 | digital pathology | pediatric medulloblastoma | MRI(钆增强T1加权、T2加权和液体衰减反转恢复) | nnU-Net | image | 78例儿童髓母细胞瘤患者(52男,26女),年龄2-18岁,来自三个不同机构 |
70 | 2025-06-18 |
Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.230489
PMID:39166970
|
research paper | 开发并验证了一种深度学习方法,用于在胶质母细胞瘤患者的治疗前后MRI扫描中检测和分割增强和非增强细胞肿瘤,并预测总体生存期(OS)和无进展生存期(PFS) | 使用nnU-Net深度学习模型结合多模态MRI数据(包括灌注和多壳扩散成像)来分割细胞肿瘤,并预测患者的生存期 | 研究为回顾性研究,可能存在选择偏差,且外部验证数据集的样本量不均 | 开发一种能够准确分割胶质母细胞瘤细胞肿瘤并预测患者生存期的深度学习方法 | 胶质母细胞瘤患者的治疗前后MRI扫描 | digital pathology | glioblastoma | multishell diffusion MRI, perfusion imaging | nnU-Net | MRI scans | 内部数据集包括243个MRI扫描(1297名患者),外部测试集包括55、70、610和419个MRI扫描 |
71 | 2025-06-18 |
Deep Learning-based Unsupervised Domain Adaptation via a Unified Model for Prostate Lesion Detection Using Multisite Biparametric MRI Datasets
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.230521
PMID:39166972
|
研究论文 | 本研究开发了一种基于深度学习的无监督域适应方法,通过统一生成模型改进多站点双参数MRI数据集中的前列腺癌检测性能 | 提出了一种新颖的无监督域适应方法,使用统一生成模型将不同b值获取的DWI图像转换为符合PI-RADS指南推荐的风格,显著提高了前列腺癌检测的准确性 | 研究为回顾性研究,且仅针对双参数MRI数据 | 提高多站点双参数MRI数据集中前列腺癌检测的准确性 | 前列腺癌病变检测 | 数字病理 | 前列腺癌 | 双参数MRI,扩散加权成像(DWI),表观扩散系数(ADC) | 统一生成模型 | MRI图像 | 5150名患者(14191个样本)用于训练,1692个测试病例(2393个样本)用于评估 |
72 | 2025-06-18 |
Improving Fairness of Automated Chest Radiograph Diagnosis by Contrastive Learning
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.230342
PMID:39166973
|
研究论文 | 开发一种使用监督对比学习(SCL)的人工智能模型,以减少胸部X光诊断中的偏见 | 采用监督对比学习(SCL)方法,通过精心选择的正负样本生成公平的图像嵌入,以减少诊断偏见 | 研究为回顾性研究,可能受到数据收集时间和范围的限制 | 减少胸部X光诊断中的偏见,提高深度学习方法在诊断中的公平性和可靠性 | 胸部X光图像 | 计算机辅助诊断(CAD) | COVID-19及其他胸部异常(如肺不张、心脏肥大、肺炎等) | 监督对比学习(SCL) | CNN | 图像 | MIDRC数据集包含27,796名患者的77,887张胸部X光图像,ChestX-ray14数据集包含30,805名患者的112,120张胸部X光图像 |
73 | 2025-06-16 |
Silicon integrated photonic-electronic neuron for noise-resilient deep learning
2024-Sep-23, Optics express
IF:3.2Q2
DOI:10.1364/OE.532306
PMID:40514809
|
research paper | 本文展示了一种光电混合乘积累加神经元(PEMAN)架构的光子段实验演示,采用硅光子芯片和高速电吸收调制器进行矩阵向量乘法 | 引入了一种新颖的激活函数斜率拉伸策略以减轻噪声影响,并展示了噪声感知深度学习技术的应用 | 实验验证仅限于特定噪声水平和计算速率下的性能评估 | 开发噪声鲁棒性强的深度学习架构,用于健康监测 | 光电混合神经元架构及其在心跳声音分类中的应用 | machine learning | cardiovascular disease | silicon photonic chip, electro-absorption modulators | three-layer neural network | sound | 1350 trainable parameters |
74 | 2025-06-16 |
Ultra-fast and accurate force spectrum prediction and inverse design of light-driven microstructure by deep learning
2024-Sep-23, Optics express
IF:3.2Q2
DOI:10.1364/OE.537005
PMID:40514837
|
研究论文 | 利用深度学习预测和逆向设计光驱动微结构的光谱力和结构配置 | 使用深度神经网络(DNNs)替代传统计算方法,实现超快速且高精度的力谱预测和微结构逆向设计 | 研究仅针对由5×5方阵组成的微结构,未涉及更复杂或不同排列的结构 | 获得在不同频率光照射下能产生预定义力的微结构配置 | 由5×5方阵组成的微结构,每个位置为空或由介电球体占据 | 机器学习 | NA | Mie散射-麦克斯韦应力张量方法 | DNNs, 生成网络 | 模拟数据 | NA |
75 | 2025-06-16 |
Hyper-NLOS: hyperspectral passive non-line-of-sight imaging
2024-Sep-23, Optics express
IF:3.2Q2
DOI:10.1364/OE.532699
PMID:40514854
|
research paper | 提出了一种基于高光谱融合的非视距成像技术HFN-Net,通过利用多光谱的高维特征和空间-光谱注意力机制,提升了图像的颜色保真度和结构细节 | 首次将高光谱特征和空间-光谱注意力机制引入非视距成像,解决了传统方法因稀疏和同质投影特征导致的图像重建不适定问题 | 未明确提及具体局限性,但可能受限于高光谱数据的获取和处理复杂度 | 提升被动非视距成像技术的性能,解决传统方法在图像重建中的不足 | 非视距成像技术及其在自动驾驶和搜救等领域的应用 | computer vision | NA | hyperspectral imaging, deep learning | HFN-Net (hyperspectral full-color auto-encoder with spatial-spectral attention) | hyperspectral image | 未明确提及具体样本数量,但开发了HS-NLOS数据集用于训练和评估 |
76 | 2025-06-16 |
Deep learning optimization for small object classification in lensfree holographic microscopy
2024-Sep-23, Optics express
IF:3.2Q2
DOI:10.1364/OE.527353
PMID:40514873
|
研究论文 | 本文探讨了在无透镜全息显微镜中应用浅层卷积神经网络进行小物体分类的性能优化 | 首次系统地研究了不同网络层和超参数对无透镜全息显微镜中小物体分类性能的影响,并发现激活层的选择对提高准确性最为关键 | 网络准确率约为83%,仍有提升空间,且研究仅针对特定类型的全息传感器 | 优化无透镜全息显微镜中的小物体分类性能 | 生物分子功能化的微米和纳米珠子 | 计算机视觉 | NA | 无透镜全息显微镜 | CNN | 图像 | NA |
77 | 2025-06-16 |
Intelligent classification of water bodies with different turbidity levels based on Gaofen-1 multispectral imagery
2024-Sep-23, Optics express
IF:3.2Q2
DOI:10.1364/OE.533540
PMID:40514862
|
研究论文 | 本文提出并验证了一种基于深度学习的智能浊度分类方法,用于高分辨率多光谱遥感影像中不同浊度水体的分类 | 提出自适应阈值水体提取方法以减少近岸水体提取误差,引入半自动语义标注方法降低人工标注成本,并采用模式滤波处理边缘噪声问题 | NA | 开发高效的大规模遥感水体浊度监测方法 | 不同浊度等级的水体 | 遥感图像处理 | NA | 深度学习 | DeepLab V3+ | 多光谱遥感影像 | NA |
78 | 2025-06-16 |
Image segmentation of phase-modulated holographic data storage based on deep learning
2024-Sep-23, Optics express
IF:3.2Q2
DOI:10.1364/OE.536783
PMID:40514868
|
研究论文 | 本文提出了一种基于深度学习的相位调制全息数据存储图像分割方法 | 通过基于图像特征的分割方法,显著减少了训练深度学习网络所需的原始样本对数量,降低了约54倍 | 未提及具体实验验证的样本规模或实际应用中的性能表现 | 提高相位调制全息数据存储的解码效率和准确性 | 相位调制全息数据存储中的衍射强度图像 | 计算机视觉 | NA | 深度学习 | DL | 图像 | 未明确提及具体样本数量 |
79 | 2025-06-16 |
Deep learning based measurement accuracy improvement of high dynamic range objects in fringe projection profilometry
2024-Sep-23, Optics express
IF:3.2Q2
DOI:10.1364/OE.538247
PMID:40514923
|
research paper | 本文提出了一种基于深度学习的方法,用于提高条纹投影轮廓术中高动态范围物体的测量精度 | 使用改进的UNet深度神经网络建立“多对一”映射关系,并采用π移位二进制条纹以获取更多饱和条纹信息,从而快速准确地解调高动态范围物体的相位 | 未明确提及具体局限性 | 解决高动态范围物体在条纹投影轮廓术中的相位解调问题,提高三维测量精度 | 高动态范围物体 | computer vision | NA | 条纹投影轮廓术(FPP) | 改进的UNet | 图像 | NA |
80 | 2025-06-11 |
A Review of Artificial Intelligence in Brachytherapy
2024-Sep-25, ArXiv
PMID:39398213
|
review | 本文综述了人工智能(AI)在近距离放射治疗中的应用,重点关注机器学习和深度学习技术 | 系统性地将AI在近距离放射治疗中的应用分为七大类,并详细总结了模型、数据规模和结果 | 未提及具体的技术实施难点或临床转化中的具体障碍 | 探讨AI如何使近距离放射治疗更加个性化、高效和有效 | 近距离放射治疗的临床工作流程 | digital pathology | NA | machine learning, deep learning | NA | NA | NA |