本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 61 | 2025-10-06 |
Leveraging camera traps and artificial intelligence to explore thermoregulation behaviour
2024-09, The Journal of animal ecology
IF:3.5Q1
DOI:10.1111/1365-2656.14139
PMID:39039745
|
研究论文 | 开发深度学习框架自动检测和分类蜥蜴行为性体温调节 | 首次结合相机陷阱和人工智能技术自动化监测动物行为性体温调节 | 研究仅针对单一物种(粗尾岩鬣蜥)且在半自然条件下进行 | 开发自动化工具监测动物行为性体温调节以应对气候变化 | 粗尾岩鬣蜥(Laudakia vulgaris) | 计算机视觉 | NA | 相机陷阱图像采集 | 目标检测模型,图像分类模型 | 图像 | NA | NA | NA | 准确率 | NA |
| 62 | 2025-07-23 |
Generative Modeling of Molecular Dynamics Trajectories
2024-Sep-26, ArXiv
PMID:39398217
|
research paper | 本文介绍了利用生成模型学习分子动力学轨迹的灵活多任务替代模型 | 首次展示了基于生成模型的分子动力学轨迹建模,能够适应多种任务,如正向模拟、过渡路径采样和轨迹上采样,并初步探索了基于动力学的分子设计 | 仅在四肽模拟和蛋白质单体上进行了验证,尚未在更复杂的分子系统上测试 | 开发深度学习替代模型以降低分子动力学的计算成本 | 分子动力学轨迹 | machine learning | NA | 分子动力学 (MD) | generative model | 分子轨迹数据 | 四肽模拟和蛋白质单体 | NA | NA | NA | NA |
| 63 | 2025-07-23 |
Small metal artifact detection and inpainting in cardiac CT images
2024-Sep-25, ArXiv
PMID:39398205
|
研究论文 | 开发了一种自动检测和修复心脏CT图像中金属伪影的深度学习方法 | 提出了结合2D U-Net和3D图像修复DL模型的新方法,用于自动检测和修复心脏CT中的金属伪影 | 方法主要针对已重建的CT图像,且需要人工标注金属伪影区域进行训练 | 提高心脏CT图像中金属伪影的检测和修复精度,以改善心脏运动分析 | 心脏CT图像中的金属伪影 | 数字病理 | 心血管疾病 | 深度学习 | 2D U-Net, 3D图像修复DL模型 | CT图像 | 12名患者的心电图门控4DCT扫描数据,以及148名患者的无伪影心脏CT数据用于合成数据集 | NA | NA | NA | NA |
| 64 | 2025-07-23 |
Novel multi-omics deconfounding variational autoencoders can obtain meaningful disease subtyping
2024-Sep-23, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae512
PMID:39413796
|
研究论文 | 本文提出了四种基于VAE的去混淆框架,用于多组学数据的聚类分析,有效减少混淆因素的影响并保留真实的生物学模式 | 创新性地开发了四种VAE去混淆框架,特别是条件多组学VAE (cXVAE),能够处理模拟的混淆效应并恢复生物学驱动的聚类结构 | 研究中提出的某些策略(如对抗训练)在去除混淆因素方面效果不足 | 开发去混淆框架以优化多组学数据的聚类分析,实现有意义的疾病亚型分类和患者分层 | 多组学数据和患者样本 | 机器学习 | 癌症 | 多组学数据分析 | VAE, cXVAE | 多组学数据 | 来自The Cancer Genome Atlas的真实多组学数据,50次重复评估 | NA | NA | NA | NA |
| 65 | 2025-07-23 |
A robust deep learning model for the classification of dental implant brands
2024-09, Journal of stomatology, oral and maxillofacial surgery
DOI:10.1016/j.jormas.2024.101818
PMID:38462066
|
研究论文 | 本研究探讨了深度学习技术在牙科种植体系统分类中的应用,通过全景X光片实现准确分类 | 提出了一种基于ConvNeXt的深度学习模型,在牙科种植体品牌分类中表现出色,准确率达到95.74% | 研究仅使用了6种牙科种植体系统作为原型,可能无法涵盖所有品牌 | 探索深度学习技术在牙科种植体系统分类中的应用,提高分类准确性和效率 | 牙科种植体系统 | 计算机视觉 | 牙科疾病 | 深度学习 | CNN, 包括VGG16、ResNet-50、EfficientNet和ConvNeXt | 图像(全景X光片) | 1258张来自牙科患者的全景X光片 | NA | NA | NA | NA |
| 66 | 2025-10-06 |
Association of quantitative histopathology measurements with antemortem medial temporal lobe cortical thickness in the Alzheimer's disease continuum
2024-09-03, Acta neuropathologica
IF:9.3Q1
DOI:10.1007/s00401-024-02789-9
PMID:39227502
|
研究论文 | 开发深度学习算法定量测量p-tau和pTDP-43病理,并分析其与阿尔茨海默病连续谱中内侧颞叶皮层厚度的关联 | 首次开发两种深度学习算法分别定量测量p-tau和pTDP-43病理,相比半定量评分能更精确地揭示病理与结构的关系 | 样本量相对有限(140例),仅关注内侧颞叶区域,未涵盖其他脑区病理 | 探究内侧颞叶萎缩与特定神经病理(p-tau和pTDP-43)之间的具体关系 | 阿尔茨海默病连续谱和边缘系统为主年龄相关TDP-43脑病患者 | 数字病理学 | 阿尔茨海默病 | 深度学习,组织切片分析,MRI成像 | 深度学习 | 组织切片图像,MRI图像 | 140例具有生前MRI成像的病例 | NA | NA | 病理分级区分能力,模型拟合优度 | NA |
| 67 | 2025-10-06 |
Deep5hmC: predicting genome-wide 5-hydroxymethylcytosine landscape via a multimodal deep learning model
2024-09-02, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae528
PMID:39196755
|
研究论文 | 开发了一个多模态深度学习框架Deep5hmC,用于预测全基因组5-羟甲基胞嘧啶修饰景观 | 首次整合DNA序列和表观遗传特征(组蛋白修饰和染色质可及性)的多模态深度学习模型预测5hmC修饰 | NA | 预测全基因组5-羟甲基胞嘧啶修饰景观,理解组织特异性基因调控 | 人脑类器官发育四个阶段和17种人体组织的5hmC测序数据 | 机器学习 | 阿尔茨海默病 | 5hmC测序 | 深度学习 | DNA序列数据, 表观遗传数据 | 四个前脑发育阶段和17种人体组织的5hmC测序数据 | NA | 多模态深度学习架构 | AUROC, Spearman相关系数 | NA |
| 68 | 2025-10-06 |
Presurgical Upgrade Prediction of DCIS to Invasive Ductal Carcinoma Using Time-dependent Deep Learning Models with DCE MRI
2024-09, Radiology. Artificial intelligence
DOI:10.1148/ryai.230348
PMID:38900042
|
研究论文 | 本研究使用时间依赖性深度学习模型预测DCIS术前升级为浸润性导管癌 | 首次将时间依赖性深度学习模型应用于DCE MRI数据,无需病灶分割即可预测DCIS升级 | 样本量较小(154例),为回顾性研究 | 预测导管原位癌术前升级为浸润性恶性肿瘤 | 经活检证实的DCIS患者(154例,其中25例术后升级) | 计算机视觉 | 乳腺癌 | 动态对比增强MRI | CNN, LSTM | 医学影像 | 154例DCIS病例(25例升级,129例未升级) | NA | ResNet50, VGG16, CNN-LSTM | AUC | NA |
| 69 | 2025-10-06 |
Prediction of extraction difficulty for impacted maxillary third molars with deep learning approach
2024-09, Journal of stomatology, oral and maxillofacial surgery
DOI:10.1016/j.jormas.2024.101817
PMID:38458545
|
研究论文 | 本研究开发了一种基于深度学习的模型,用于通过全景X光片预测上颌阻生第三磨牙的手术难度 | 首次使用YoloV5x架构对阻生上颌第三磨牙进行自动分割和手术难度分类 | 数据集仅包含708张全景X光片,样本量相对有限 | 评估深度学习模型在预测上颌阻生第三磨牙手术难度方面的有效性 | 上颌阻生第三磨牙 | 计算机视觉 | 口腔疾病 | 全景X光成像 | 深度学习 | 医学图像 | 708张全景X光片 | YoloV5 | YoloV5x | 灵敏度,精确度,F1分数 | NA |
| 70 | 2025-10-06 |
Clinical Translation of a Deep Learning Model of Radiation-Induced Lymphopenia for Esophageal Cancer
2024-Sep, International journal of particle therapy
IF:2.1Q2
DOI:10.1016/j.ijpt.2024.100624
PMID:39228692
|
研究论文 | 本研究将深度学习模型应用于食管癌放疗中预测辐射诱导淋巴细胞减少症风险,并提出将免疫系统作为风险器官纳入放疗计划优化的策略 | 首次提出将免疫系统作为风险器官的概念,并开发深度学习模型指导放疗计划优化以减轻辐射诱导淋巴细胞减少症 | 研究基于回顾性数据和小样本量(20例患者),需要前瞻性临床试验验证 | 开发并验证深度学习模型在预测和减轻食管癌放疗中辐射诱导淋巴细胞减少症风险的应用 | 食管癌患者 | 数字病理 | 食管癌 | 深度学习 | 深度学习模型 | 放疗计划数据、剂量学参数、淋巴细胞计数 | 20例食管癌患者(10例接受调强放疗,10例接受被动散射质子治疗) | NA | NA | 绝对淋巴细胞计数最低值预测准确性 | NA |
| 71 | 2025-10-06 |
Investigating the relationship between radiographic joint space width loss and deep learning-derived magnetic resonance imaging-based cartilage thickness loss in the medial weight-bearing region of the tibiofemoral joint
2024-Sep, Osteoarthritis and cartilage open
DOI:10.1016/j.ocarto.2024.100508
PMID:39238657
|
研究论文 | 研究膝关节X射线关节间隙宽度损失与深度学习衍生的MRI软骨厚度损失之间的关系 | 首次使用深度学习定量分析MRI软骨厚度损失,并与传统X射线测量方法进行对比分析 | 样本量相对有限(n=256),仅关注膝关节内侧承重区域,观察时间较短(12-24个月) | 评估X射线关节间隙宽度损失是否能有效代表MRI测量的软骨厚度损失 | 骨关节炎倡议(OAI)研究中可能处于早期骨关节炎阶段的膝关节 | 医学影像分析 | 骨关节炎 | 磁共振成像, X射线成像, 深度学习 | 深度学习模型 | 医学影像(MRI和X射线) | 256个膝关节 | NA | NA | Pearson相关系数, p值, 线性混合效应模型系数 | NA |
| 72 | 2025-10-06 |
Enhanced Electroacoustic Tomography with Supervised Learning for Real-time Electroporation Monitoring
2024-Sep, Precision radiation oncology
DOI:10.1002/pro6.1242
PMID:40336975
|
研究论文 | 本研究提出了一种基于监督学习的电声层析成像方法,用于实时监测电穿孔治疗过程 | 首次在实验环境中使用单个线性阵列实现高质量电声层析成像,通过深度学习模型校正图像失真 | 研究仅使用56个实验数据集,样本量相对有限 | 改进电声层析成像技术,提高其在基于纳秒脉冲电场的电穿孔治疗中的实时监测能力 | 纳秒脉冲电场产生的电声信号 | 医学影像处理 | 癌症治疗 | 电声层析成像,纳秒脉冲电场 | 深度学习 | 超声信号,图像数据 | 56个实验电声数据集(46个训练,10个测试) | NA | NA | RMSE, PSNR, SSIM | NA |
| 73 | 2025-10-06 |
Permethrin exposure primes neuroinflammatory stress response to drive depression-like behavior through microglial activation in a mouse model of Gulf War Illness
2024-Sep-13, Journal of neuroinflammation
IF:9.3Q1
DOI:10.1186/s12974-024-03215-3
PMID:39272155
|
研究论文 | 本研究通过建立海湾战争疾病小鼠模型,探讨了氯菊酯暴露如何通过小胶质细胞激活引发神经炎症应激反应并导致抑郁样行为 | 首次揭示了氯菊酯暴露通过启动小胶质细胞炎症激活状态,在心理应激触发下导致抑郁样行为的机制 | 研究基于小鼠模型,结果向人类临床转化的有效性需要进一步验证 | 评估氯菊酯暴露是否能够启动神经炎症应激反应并引发与海湾战争疾病相关的精神症状 | 海湾战争疾病小鼠模型 | 神经科学 | 海湾战争疾病 | 单细胞RNA测序,Gi抑制性DREADD受体技术 | 动物模型 | 基因表达数据,行为数据 | 从小鼠海马体收集的21,566个单细胞核 | NA | UniCell Deconvolve | NA | NA |
| 74 | 2025-10-06 |
Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images
2024-Sep-06, Cancers
IF:4.5Q1
DOI:10.3390/cancers16173097
PMID:39272955
|
研究论文 | 开发基于深度学习的模型从全切片图像预测肺腺癌术后5年复发风险 | 提出创新的双重注意力架构显著提升计算效率,在复发风险分层中表现优异 | NA | 准确预测肺腺癌患者手术切除后的5年复发风险 | 肺腺癌患者的全切片图像 | 数字病理学 | 肺癌 | 全切片图像分析 | 深度学习 | 图像 | NA | NA | 双重注意力架构 | 风险比 | NA |
| 75 | 2025-10-06 |
Derivation, external and clinical validation of a deep learning approach for detecting intracranial hypertension
2024-Sep-05, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-024-01227-0
PMID:39237755
|
研究论文 | 开发并验证一种基于深度学习的无创颅内高压检测方法 | 首次利用常规采集的颅外波形数据开发人工智能生物标志物(aICP)来检测颅内高压,减少对侵入性监测的需求 | NA | 开发无创检测颅内高压的人工智能方法 | 成年患者 | 医疗人工智能 | 神经系统疾病 | 深度学习 | 深度学习模型 | 波形数据 | MIMIC-III波形数据库(2000-2013)和西奈山医院独立数据集(2020-2022) | NA | NA | AUROC, 准确率, 灵敏度, 特异性 | NA |
| 76 | 2025-10-06 |
Automatic detection of the third molar and mandibular canal on panoramic radiographs based on deep learning
2024-09, Journal of stomatology, oral and maxillofacial surgery
DOI:10.1016/j.jormas.2024.101946
PMID:38857691
|
研究论文 | 开发基于深度学习的全景X光片中下颌第三磨牙与下颌管位置关系自动检测框架 | 提出RPIFormer分割模型和结合CycleGAN图像增强的端到端检测框架,无需手动裁剪即可实现自动检测 | 数据集规模有限(共450张全景X光片),仅在两套数据集上验证 | 辅助医生评估和规划下颌第三磨牙手术干预方案 | 下颌第三磨牙(M3)和下颌管(MC) | 计算机视觉 | 口腔疾病 | 全景X光成像 | Transformer, GAN | 医学影像 | 450张全景X光片(253张来自医院,197张来自在线平台) | PyTorch | RPIFormer, CycleGAN | Dice系数, IoU, 召回率, 精确率 | NA |
| 77 | 2025-10-06 |
Deep Learning Estimation of Small Airways Disease from Inspiratory Chest CT is Associated with FEV1 Decline in COPD
2024-Sep-11, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.09.10.24313079
PMID:39314974
|
研究论文 | 本研究开发了一种基于深度学习的AI模型,仅通过吸气相胸部CT扫描即可估算功能性小气道疾病,并验证其与COPD患者肺功能下降的关联 | 首次提出仅使用吸气相CT扫描(无需呼气相扫描)通过生成式模型估算功能性小气道疾病的方法 | 研究依赖于特定队列数据(SPIROMICS和COPDGene),需要在更广泛人群中验证 | 开发并验证基于AI的功能性小气道疾病估算方法及其临床关联 | 慢性阻塞性肺疾病(COPD)患者 | 医学影像分析 | 慢性阻塞性肺疾病 | 计算机断层扫描(CT) | 生成模型 | 医学影像(胸部CT扫描) | SPIROMICS研究2513名参与者(1055名用于模型开发,1458名用于验证),COPDGene研究458名参与者用于外部验证 | NA | NA | Pearson相关系数,组内相关系数,多元回归系数 | NA |
| 78 | 2025-10-06 |
Automated deep learning segmentation of neuritic plaques and neurofibrillary tangles in Alzheimer disease brain sections using a proprietary software
2024-09-01, Journal of neuropathology and experimental neurology
IF:3.2Q2
DOI:10.1093/jnen/nlae048
PMID:38812098
|
研究论文 | 开发基于深度学习的自动化工作流程,用于阿尔茨海默病脑切片中神经炎斑块和神经纤维缠结的注释与分割 | 采用AI驱动的迭代程序显著提升注释质量超过50%,并创建了包含5013个NPs和5143个NFTs的专家验证注释数据库 | 仅使用15张全切片图像,样本量有限,且来自不同生物库的组织质量、染色强度和扫描格式存在差异 | 开发自动化深度学习工作流程以改进阿尔茨海默病神经病理学诊断 | 阿尔茨海默病患者脑切片中的神经炎斑块和神经纤维缠结 | 数字病理学 | 阿尔茨海默病 | AT8免疫染色 | CNN | 图像 | 15张来自4个生物库的额叶皮层全切片图像 | Visiopharm | U-Net | Dice相似系数 | NA |
| 79 | 2025-10-06 |
Deep learning in the diagnosis of maxillary sinus diseases: a systematic review
2024-09-01, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae031
PMID:38995816
|
系统综述 | 系统评估深度学习在上颌窦疾病诊断中的性能表现 | 首次系统综述深度学习在上颌窦疾病检测、分类和分割任务中的应用效果 | 仅纳入14项研究,样本量有限,且所有研究均基于放射影像数据 | 评估深度学习在上颌窦疾病诊断中的性能 | 上颌窦疾病 | 计算机视觉 | 上颌窦疾病 | 放射影像技术 | 深度学习模型 | 放射影像 | 14项研究(从1167项研究中筛选) | NA | NA | 准确率, AUC | NA |
| 80 | 2025-10-06 |
Improved Dementia Prediction in Cerebral Small Vessel Disease Using Deep Learning-Derived Diffusion Scalar Maps From T1
2024-09, Stroke
IF:7.8Q1
DOI:10.1161/STROKEAHA.124.047449
PMID:39145386
|
研究论文 | 开发了一种从T1图像合成扩散张量成像标量图(FA/MD)的深度学习方法,用于改善脑小血管病患者的痴呆预测 | 首次提出从常规T1图像合成扩散张量成像标量图的方法,解决了扩散张量成像采集时间长且临床不常规可用的问题 | 在SCANS数据集上的结构相似性指数相对较低,合成FA图的质量有待进一步提升 | 提高脑小血管病患者痴呆预测的准确性 | 脑小血管病患者和正常对照人群 | 医学影像分析 | 脑小血管病 | 扩散张量成像,磁共振成像 | 深度学习 | 医学影像 | 训练集:4998名UK Biobank参与者;验证集:4个外部数据集共753名患者和1000名正常对照 | NA | NA | 结构相似性指数,c-index | NA |