本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
801 | 2024-09-15 |
An ECG denoising technique based on AHIN block and gradient difference max loss
2024 Sep-Oct, Journal of electrocardiology
IF:1.3Q3
|
研究论文 | 本文提出了一种基于AHIN块和梯度差最大损失函数的ECG去噪技术 | 本文创新性地结合了注意力半实例归一化块(AHIN块)和梯度差最大损失函数(GDM Loss),以提高去噪模型的鲁棒性和准确性 | NA | 研究目的是提高ECG信号去噪的性能,减少噪声对信号信息的损失 | 研究对象是ECG信号及其在去噪过程中的表现 | 机器学习 | NA | 深度学习 | AHIN块 | 信号 | NA |
802 | 2024-09-15 |
Virtual multiplexed immunofluorescence staining from non-antibody-stained fluorescence imaging for gastric cancer prognosis
2024-Sep, EBioMedicine
IF:9.7Q1
DOI:10.1016/j.ebiom.2024.105287
PMID:39154539
|
研究论文 | 本文介绍了一种基于深度学习的虚拟多重免疫荧光染色系统,用于胃癌预后分析 | 提出了一种多模态注意力机制的虚拟多重免疫荧光染色系统,能够从非抗体染色的双模态荧光图像中提取潜在的抗体相关特征 | NA | 开发一种高效且成本低廉的多重免疫荧光染色技术,用于胃癌预后分析 | 胃癌患者的病理切片 | 数字病理学 | 胃癌 | 深度学习 | 多模态注意力机制模型 | 图像 | 180张病理切片,来自94名胃癌患者 |
803 | 2024-09-15 |
ModFOLD9: A Web Server for Independent Estimates of 3D Protein Model Quality
2024-Sep-01, Journal of molecular biology
IF:4.7Q1
DOI:10.1016/j.jmb.2024.168531
PMID:39237204
|
研究论文 | 介绍了一个名为ModFOLD9的网络服务器,用于独立评估3D蛋白质模型质量 | ModFOLD9整合了基于深度学习的多个新评分,显著提高了预测准确性 | NA | 开发一个独立的服务器来检测蛋白质模型中的局部错误并选择高质量模型 | 3D蛋白质模型质量 | 计算机视觉 | NA | 深度学习 | NA | 模型 | NA |
804 | 2024-09-15 |
Exploring hepatic fibrosis screening via deep learning analysis of tongue images
2024-Sep, Journal of traditional and complementary medicine
IF:3.3Q1
DOI:10.1016/j.jtcme.2024.03.010
PMID:39262664
|
研究论文 | 本研究评估了基于深度学习的舌象分析在肝纤维化筛查中的有效性 | 利用深度学习技术分析舌象图像进行肝纤维化筛查 | NA | 评估深度学习在舌象分析中用于肝纤维化筛查的有效性 | 舌象图像和肝纤维化筛查 | 计算机视觉 | 肝病 | 深度学习 | DenseNet-201 | 图像 | 1083张舌象图像,来自741名患者 |
805 | 2024-08-20 |
Correction to "Physics-Informed Deep Learning Approach for Reintroducing Atomic Detail in Coarse-Grained Configurations of Multiple Poly(lactic acid) Stereoisomers"
2024-Sep-09, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c01407
PMID:39158929
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
806 | 2024-09-14 |
Enhancing early Parkinson's disease detection through multimodal deep learning and explainable AI: insights from the PPMI database
2024-09-09, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-70165-4
PMID:39251639
|
研究论文 | 研究通过多模态深度学习和可解释人工智能技术,利用PPMI数据库数据,提升帕金森病早期检测的准确性 | 引入了一种联合协同学习方法进行多模态融合,结合了不同的3D架构和新型激励网络(EN),并支持可解释人工智能(XAI)技术 | NA | 提升帕金森病早期检测的准确性 | 帕金森病的早期检测 | 机器学习 | 神经退行性疾病 | 多模态深度学习 | DenseNet, ResNet, Vision Transformer (ViT) | 影像和临床数据 | 利用了Parkinson's Progression Markers Initiative数据库的数据 |
807 | 2024-09-14 |
Advancements in supervised deep learning for metal artifact reduction in computed tomography: A systematic review
2024-Sep-07, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2024.111732
PMID:39265203
|
综述 | 本文系统回顾了监督式深度学习在计算机断层扫描中减少金属伪影的算法性能 | 介绍了基于深度学习的金属伪影减少算法在临床实践中的应用 | 需要标准化方法来评估基于深度学习的金属伪影减少算法在临床数据上的性能,以提高算法之间的可比性 | 提供当前监督式深度学习金属伪影减少算法在计算机断层扫描中的性能概述 | 监督式深度学习金属伪影减少算法在计算机断层扫描中的应用 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 14项研究 |
808 | 2024-09-14 |
Visible and near-infrared spectral imaging combined with robust regression for predicting firmness, fatness, and compositional properties of fresh pork bellies
2024-Sep-06, Meat science
IF:5.7Q1
DOI:10.1016/j.meatsci.2024.109645
PMID:39265383
|
研究论文 | 研究利用可见光和近红外光谱成像结合稳健回归方法预测新鲜猪腹肉的硬度、脂肪含量和化学成分 | 首次将可见光和近红外光谱成像技术应用于预测猪腹肉的硬度、脂肪含量和化学成分,并提出了一种稳健的回归方法 | 研究仅限于猪腹肉样本,未来可扩展到其他肉类产品 | 探索可见光和近红外光谱成像技术在实时评估猪腹肉质量方面的潜力 | 猪腹肉的硬度、脂肪含量和化学成分 | 计算机视觉 | NA | 可见光和近红外光谱成像 | 迭代重加权偏最小二乘回归 | 光谱图像 | 182个猪腹肉样本 |
809 | 2024-09-14 |
scNODE : generative model for temporal single cell transcriptomic data prediction
2024-09-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae393
PMID:39230694
|
研究论文 | 提出了一种名为scNODE的深度学习模型,用于预测未观测时间点的单细胞基因表达数据 | scNODE结合了变分自编码器和神经常微分方程,通过连续非线性的潜在空间预测基因表达,并引入动态正则化项以增强模型对分布偏移的鲁棒性 | NA | 解决单细胞实验中由于资源和技术限制导致的离散和稀疏采样问题,以促进细胞发育分析 | 单细胞基因表达数据 | 机器学习 | NA | 深度学习 | 变分自编码器、神经常微分方程 | 基因表达数据 | 三个真实世界的scRNA-seq数据集 |
810 | 2024-09-14 |
Multi-task deep latent spaces for cancer survival and drug sensitivity prediction
2024-09-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae388
PMID:39230696
|
研究论文 | 本文介绍了一种名为MODAE的新型深度学习算法,用于整合细胞系和患者的组学数据,以探索精准医学的机会 | MODAE算法在药物敏感性迁移学习框架中引入了患者生存预测作为附加任务,旨在平衡自编码、领域适应、药物敏感性预测和生存预测目标,以更好地保留与生存相关的患者异质性 | 尽管MODAE在生存预测任务中表现与基线模型相当,但在药物敏感性预测任务中表现不佳 | 探索精准医学的机会,特别是通过整合细胞系和患者的组学数据来预测癌症患者的生存和药物敏感性 | 癌症患者的生存和药物敏感性 | 机器学习 | 癌症 | 深度学习 | MODAE | 组学数据 | NA |
811 | 2024-09-14 |
Metadata-guided feature disentanglement for functional genomics
2024-09-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae403
PMID:39230700
|
研究论文 | 本文介绍了一种名为Metadata-guided Feature Disentanglement (MFD)的方法,用于从潜在的技术偏差中分离出生物学相关的特征 | MFD方法通过将目标元数据纳入模型训练,条件化模型输出层的权重,并使用对抗性学习惩罚来强制特征子空间之间的独立性,从而实现特征解耦 | NA | 开发一种方法,从功能基因组学数据中分离出生物学相关的特征,同时减少技术偏差的影响 | 功能基因组学数据中的生物学相关特征和技术偏差 | 机器学习 | NA | 深度学习 (DL) | NA | 基因组序列 | NA |
812 | 2024-09-14 |
Improving dictionary-based named entity recognition with deep learning
2024-09-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae402
PMID:39230709
|
研究论文 | 本文通过深度学习方法改进了基于字典的命名实体识别,自动生成需要屏蔽的名称列表,从而提高了文本挖掘的精度 | 本文创新性地使用Transformer模型(BioBERT)进行实体类型分类,自动生成需要屏蔽的名称列表,显著提高了文本挖掘的精度 | 本文未详细讨论模型的召回率略有下降的问题 | 改进基于字典的命名实体识别方法,提高文本挖掘的精度 | 生物医学领域的基因、疾病、物种和化学物质四种实体类型 | 自然语言处理 | NA | Transformer模型(BioBERT) | Transformer | 文本 | 超过1250万个文本片段 |
813 | 2024-09-13 |
A deep learning method for predicting the origins of cervical lymph node metastatic cancer on digital pathological images
2024-Sep-20, iScience
IF:4.6Q1
DOI:10.1016/j.isci.2024.110645
PMID:39252964
|
研究论文 | 本文提出了一种基于深度学习的方法,用于预测数字病理图像中颈部淋巴结转移癌的起源 | 本文设计了一种多实例学习算法,用于关键区域识别,并在内部和外部数据集上验证了模型的泛化能力 | 本文仅使用了H&E染色的切片数据,未考虑其他类型的病理图像 | 开发一种辅助医生在手术前评估颈部淋巴结状态的方法 | 颈部淋巴结转移癌的起源 | 数字病理学 | NA | 深度学习 | 多实例学习算法 | 图像 | 1036例颈部淋巴结活检样本 |
814 | 2024-09-13 |
Advancing precise diagnosis of nasopharyngeal carcinoma through endoscopy-based radiomics analysis
2024-Sep-20, iScience
IF:4.6Q1
DOI:10.1016/j.isci.2024.110590
PMID:39252978
|
研究论文 | 本研究开发了一种基于内窥镜图像的深度学习模型,用于鼻咽癌的精确诊断 | 提出了一个基于内窥镜图像的深度学习模型,用于鼻咽癌的早期检测和诊断 | NA | 开发一种用于鼻咽癌诊断的深度学习模型 | 鼻咽癌的早期检测和诊断 | 计算机视觉 | 鼻咽癌 | 深度学习 | 深度学习模型 | 图像 | 12,087张鼻咽内窥镜图像和309个视频,来自1,108名患者 |
815 | 2024-09-13 |
Prediction and Interpretability Study of the Glass Transition Temperature of Polyimide Based on Machine Learning with Quantitative Structure-Property Relationship (Tg-QSPR)
2024-Sep-12, The journal of physical chemistry. B
DOI:10.1021/acs.jpcb.4c00756
PMID:38979707
|
研究论文 | 本研究利用机器学习方法基于定量结构-性质关系(QSPR)预测聚酰亚胺的玻璃化转变温度(Tg) | 本研究通过六种不同的特征选择方法优化分子描述符,并使用五种集成学习算法和一种深度学习算法构建预测模型,显著提高了预测准确性和鲁棒性 | 本研究仅限于聚酰亚胺材料,且模型需要进一步验证以确保其在不同条件下的适用性 | 开发一种基于机器学习的预测模型,用于快速设计和开发聚酰亚胺结构 | 聚酰亚胺的玻璃化转变温度 | 机器学习 | NA | RDKit | 集成学习算法和深度学习算法 | 分子描述符 | 1257种聚酰亚胺 |
816 | 2024-09-13 |
Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility
2024-Sep-12, Nanoscale
IF:5.8Q1
DOI:10.1039/d4nr03081h
PMID:39171500
|
研究论文 | 本文利用深度学习方法进行纳米光子学中纳米孔阵列(NHAs)的正向和逆向设计,以优化其光学性能 | 采用深度神经网络进行NHAs的正向和逆向设计,显著提高了设计效率和精度 | 实验验证仅限于金纳米孔阵列,未来需扩展到其他材料和结构 | 通过深度学习优化纳米孔阵列的光学性能,简化设计过程 | 纳米孔阵列的光学特性和结构参数 | 纳米光子学 | NA | 深度学习 | 深度神经网络 | 结构数据 | 超过6000个样本 |
817 | 2024-09-13 |
Accelerating Global Search of Large-Sized Silver Clusters Using Cluster Graph Attention Network
2024-Sep-12, The journal of physical chemistry letters
IF:4.8Q1
DOI:10.1021/acs.jpclett.4c01953
PMID:39213499
|
研究论文 | 本文利用集群图注意力网络(CGANet)和自制的综合遗传算法(CGA)程序,加速了大规模银簇的全局搜索 | 本文首次将深度学习技术应用于银簇的结构搜索,效率比传统的密度泛函理论(DFT)计算高出约两个数量级 | NA | 研究银簇的稳定性与反应性,并解释实验中观察到的银簇增强稳定性现象 | 银簇(Ag = 30-60)的结构与电子性质 | 机器学习 | NA | 集群图注意力网络(CGANet),综合遗传算法(CGA) | 图注意力网络(GANet) | 结构数据 | 银簇(Ag = 30-60) |
818 | 2024-09-13 |
A Deep Learning Approach to Uncover Voltage-Gated Ion Channels' Intermediate States
2024-Sep-12, The journal of physical chemistry. B
DOI:10.1021/acs.jpcb.4c03182
PMID:39213618
|
研究论文 | 本文提出了一种基于深度学习的管道,用于全面探索电压门控离子通道在门控过程中的构象重排 | 本文首次应用深度学习方法来解析电压门控离子通道的中间状态及其过渡机制 | 由于缺乏实验数据,本文主要依赖分子动力学模拟和深度学习方法,可能存在对实际生物过程的简化 | 旨在揭示电压门控离子通道的门控机制及其中间状态 | Kv1.2电压传感器域的电压门控离子通道 | 机器学习 | NA | 深度学习 | 深度学习模型 | 结构数据 | 具体样本数量未明确提及 |
819 | 2024-09-13 |
Machine Learning Approaches for Automated Diagnosis of Cardiovascular Diseases: A Review of Electrocardiogram Data Applications
2024-Sep-12, Cardiology in review
IF:2.0Q3
DOI:10.1097/CRD.0000000000000764
PMID:39264208
|
综述 | 本文综述了机器学习和深度学习算法在利用心电图数据诊断和分类心血管疾病中的应用 | 深度学习算法在数据稀缺情况下仍表现出高效性 | NA | 评估机器学习和深度学习算法在心血管疾病诊断中的有效性 | 心电图数据 | 机器学习 | 心血管疾病 | 机器学习 | 卷积神经网络、深度神经网络 | 心电图数据 | 30项研究 |
820 | 2024-09-13 |
Deep-Learning-Based Blood Glucose Detection Device Using Acetone Exhaled Breath Sensing Features of α-Fe2O3-MWCNT Nanocomposites
2024-Sep-11, ACS applied materials & interfaces
IF:8.3Q1
DOI:10.1021/acsami.4c06855
PMID:39225263
|
研究论文 | 本文开发了一种基于α-Fe2O3-MWCNT纳米复合材料的呼气中丙酮传感特征的无创血糖检测设备 | 利用α-Fe2O3-MWCNT纳米复合材料开发了一种能够在高湿度环境下准确检测呼气中丙酮含量的传感器,并结合深度学习算法提高了检测设备的可靠性和校准精度 | NA | 开发一种用于早期糖尿病诊断的无创血糖检测设备 | 呼气中的丙酮含量与血糖水平的关系 | 传感器技术 | 糖尿病 | α-Fe2O3-MWCNT纳米复合材料 | 深度学习算法 | 呼气数据 | 50名志愿者 |