深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202409-202409] [清除筛选条件]
当前共找到 1177 篇文献,本页显示第 1001 - 1020 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1001 2024-08-29
CytoGAN: Unpaired staining transfer by structure preservation for cytopathology image analysis
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种名为CytoGAN的不同染色转换模型,用于生成具有不同染色风格的细胞学图像,同时保留细胞结构 CytoGAN模型包含一个新颖的结构保留模块和一个染色自适应模块,能够在源域和目标域分辨率或细胞大小不匹配的情况下,生成真实且高质量的细胞学图像 NA 解决不同染色风格的细胞学图像对分析算法性能的影响 子宫内膜细胞形态分析 数字病理学 子宫内膜癌 NA GAN 图像 NA
1002 2024-08-29
Comparison of AI with and without hand-crafted features to classify Alzheimer's disease in different languages
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本研究比较了基于手工特征和非手工特征的人工智能模型在不同语言环境下对阿尔茨海默病进行分类的效果 本研究首次在不同语言环境下比较了基于手工特征和非手工特征的人工智能模型在阿尔茨海默病诊断中的应用 研究仅使用了韩语和英语两种语言的数据集,未涵盖其他语言 探讨人工智能模型在不同语言环境下对阿尔茨海默病的诊断能力 阿尔茨海默病患者的语音数据 机器学习 阿尔茨海默病 NA 机器学习模型和深度学习模型 语音数据 使用了韩语和英语两种语言的语音数据集
1003 2024-08-29
CBAM VGG16: An efficient driver distraction classification using CBAM embedded VGG16 architecture
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种将卷积块注意力模块(CBAM)嵌入到VGG16深度学习架构中的方法,以提高驾驶员分心分类的性能 通过在传统的VGG16架构中加入CBAM层,增强了模型的特征提取能力,从而提高了驾驶员分心分类的结果 NA 提高自动驾驶系统中驾驶员监控系统的驾驶员分心分类性能 驾驶员分心或活动分类 计算机视觉 NA 深度学习 CBAM VGG16 图像 使用开罗美国大学(AUC)分心驾驶员数据集版本2(AUCD2)中的摄像头1和2图像进行测试
1004 2024-08-29
Deep learning for rapid virtual H&E staining of label-free glioma tissue from hyperspectral images
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种结合深度学习和超光谱成像技术的方法,用于快速将超光谱图像转换为虚拟H&E染色图像,以替代传统的H&E染色技术 该方法通过捕捉不同波长的组织信息,提供了与真实H&E染色相似的全面和详细的组织成分信息,并开发了一个集成了CCD控制、显微镜控制和虚拟H&E染色技术的综合软件系统 NA 旨在开发一种快速且准确的方法,用于虚拟H&E染色,以替代传统的H&E染色技术 胶质瘤组织 数字病理学 脑瘤 超光谱成像 Unet 图像 NA
1005 2024-08-29
Shape prior-constrained deep learning network for medical image segmentation
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种形状先验约束的多尺度特征融合分割网络,用于医学图像分割 该方法包括形状先验约束和多尺度特征融合两个模块,通过形状生成自编码器网络模型与分割网络模型的循环协作框架,提高了分割精度 NA 旨在解决医学图像分割中低对比度和邻近器官强度相似的问题 医学图像中的目标器官 计算机视觉 NA 深度学习 CNN 图像 在ACDC MICCAI'17挑战数据集、COVID-19 CT肺部扫描和LiTS2017肝脏数据集上进行了评估
1006 2024-08-29
A transformer-based unified multimodal framework for Alzheimer's disease assessment
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 提出了一种基于transformer的统一多模态框架AD-Transformer,用于阿尔茨海默病评估 AD-Transformer通过整合结构磁共振成像、临床和遗传数据,创新性地使用transformer块学习输入数据的综合表示,捕捉各模态间的复杂交互 NA 提高阿尔茨海默病诊断和轻度认知障碍转换预测的准确性 阿尔茨海默病患者和轻度认知障碍患者 机器学习 阿尔茨海默病 NA Transformer 图像和非图像数据 1651名受试者
1007 2024-08-29
Action tremor features discovery for essential tremor and Parkinson's disease with explainable multilayer BiLSTM
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文通过引入具有可解释性的人工智能(XAI)的多层双向长短期记忆网络(BiLSTM),旨在更好地解释震颤特征并量化震颤区分中的重要区域,以区分帕金森病(PD)和原发性震颤(ET)。 本文提出的XAI-BiLSTM模型能够揭示PD和ET震颤的独特时间模式和频率范围,有助于减少误诊率并提高治疗效果。 NA 克服深度学习模型在临床应用中的不透明性,提高震颤分类的准确性。 帕金森病(PD)、原发性震颤(ET)及正常震颤的分类。 机器学习 神经退行性疾病 多层双向长短期记忆网络(BiLSTM) BiLSTM 时间序列数据 NA
1008 2024-08-29
Visceral Adiposity and Progression of ADPKD: A Cohort Study of Patients From the TEMPO 3:4 Trial
2024-Sep, American journal of kidney diseases : the official journal of the National Kidney Foundation IF:9.4Q1
研究论文 本研究通过回顾性队列研究探讨了内脏脂肪与常染色体显性多囊肾病(ADPKD)进展之间的关系,并评估了托伐普坦的疗效受内脏脂肪影响的情况。 使用深度学习从磁共振成像(MRI)中提取内脏脂肪数据,并分析其与ADPKD患者肾脏体积年变化率的关系,以及对托伐普坦疗效的影响。 回顾性研究;快速进展者;深度学习的计算需求。 探讨内脏脂肪与ADPKD患者肾脏疾病进展的关系及对托伐普坦疗效的影响。 ADPKD患者及托伐普坦治疗效果。 NA 多囊肾病 磁共振成像(MRI),深度学习 深度学习分割模型 图像 1053名ADPKD患者
1009 2024-08-29
Brain-GCN-Net: Graph-Convolutional Neural Network for brain tumor identification
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种结合图神经网络和卷积神经网络的深度学习模型,用于提高脑肿瘤检测的准确性 该模型通过整合图神经网络和卷积神经网络,能够更全面地表示脑肿瘤图像并提高分类性能 NA 提高脑肿瘤检测和分类的准确性 脑肿瘤 计算机视觉 脑肿瘤 深度学习 图卷积神经网络 图像 10847张MRI图像
1010 2024-08-29
Contrastive learning based method for X-ray and CT registration under surgical equipment occlusion
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文设计了一种基于对比学习的X射线和CT图像配准方法,以解决手术设备遮挡问题 提出了一种对比学习方法,将遮挡和未遮挡的X射线视为正样本,增强模型对遮挡的鲁棒性 未提及具体限制 提高手术导航中3D/2D图像配准的准确性,特别是在存在手术设备遮挡的情况下 X射线和CT图像的配准 计算机视觉 NA 对比学习 Transformer 图像 包含不同手术设备的遮挡X射线
1011 2024-08-29
Discovery of potential antidiabetic peptides using deep learning
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本研究利用先进的深度学习技术探索发现和预测具有抗糖尿病活性的肽(ADPs)的方法 开发了两种模型:单通道CNN和三通道神经网络(CNN + RNN + Bi-LSTM),并在独立测试集上实现了90.48%的预测准确率,超过了现有的ADP预测工具 NA 解决发现和预测具有抗糖尿病活性的肽(ADPs)的挑战 具有抗糖尿病活性的肽(ADPs) 机器学习 糖尿病 深度学习 CNN, RNN, Bi-LSTM 肽序列数据 主要从BioDADPep数据库收集ADPs,以及从抗肿瘤、抗菌和抗病毒肽数据集中收集数千个非ADPs
1012 2024-08-29
Advancing breast ultrasound diagnostics through hybrid deep learning models
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文介绍了一种名为EfficientKNN的新型混合深度学习模型,该模型结合了EfficientNetB3的先进特征提取能力和k-最近邻(k-NN)算法的简单有效性,用于乳腺超声诊断 EfficientKNN模型通过结合EfficientNetB3和k-NN算法,实现了在医疗图像分类中的高准确率和临床适用性 NA 提高乳腺超声诊断的准确性 乳腺超声图像的分类 计算机视觉 乳腺癌 深度学习 混合模型 图像 包含良性、恶性和正常医疗图像的精选数据集
1013 2024-08-29
Improved Dementia Prediction in Cerebral Small Vessel Disease Using Deep Learning-Derived Diffusion Scalar Maps From T1
2024-Sep, Stroke IF:7.8Q1
research paper 本文开发了一种深度学习模型,用于从T1图像合成FA/MD图,以提高小血管疾病中痴呆预测的准确性 提出了一种快速且可泛化的方法,从T1图像合成FA/MD图,以在没有扩散张量成像数据的情况下提高小血管疾病中痴呆预测的准确性 NA 开发一种方法,从T1图像合成FA/MD图,以提高小血管疾病中痴呆预测的准确性 小血管疾病中的痴呆预测 machine learning vascular dementia diffusion tensor imaging deep learning image 训练数据集包含4998名参与者,四个外部验证数据集包含753名小血管疾病患者和1000名正常对照
1014 2024-08-29
Semantic segmentation in skin surface microscopic images with artifacts removal
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文研究了在皮肤表面显微图像中使用深度学习模型进行语义分割,并提出了一种新的暗角检测和去除方法来提高分割性能 引入了暗角检测和去除方法,这是一种新的皮肤病变分割方法 NA 提高深度学习模型在皮肤病变分割中的性能 皮肤表面显微图像中的常见伪影,如头发和暗角 计算机视觉 NA 深度学习 NA 图像 使用了PH2、ISIC 2017和ISIC 2018数据集
1015 2024-08-29
A cross-temporal multimodal fusion system based on deep learning for orthodontic monitoring
2024-Sep, Computers in biology and medicine IF:7.0Q1
研究论文 本文开发了一种基于深度学习的跨时间多模态融合系统,用于正畸治疗中的风险监测,无需额外辐射 本文首次开发了基于深度学习的跨时间多模态融合系统,用于正畸治疗中的连续风险监测,无需额外辐射 NA 开发一种基于深度学习的跨时间多模态图像融合系统,用于获取牙齿和颌骨信息,增强正畸医生监测风险的能力 牙齿和颌骨的三维关系 计算机视觉 NA CBCT 和口腔内扫描 (IOS) 深度学习模型 图像 NA
1016 2024-08-29
Osteoporotic vertebral compression fracture (OVCF) detection using artificial neural networks model based on the AO spine-DGOU osteoporotic fracture classification system
2024-Sep, North American Spine Society journal
研究论文 本文评估了基于AO脊柱-DGOU骨质疏松性骨折分类系统的人工神经网络模型在骨质疏松性椎体压缩骨折(OVCF)检测中的潜力。 利用深度学习的人工神经网络模型快速自动识别和可视化OVCF。 NA 评估人工神经网络在OVCF检测中的潜力。 骨质疏松性椎体压缩骨折(OVCF)的检测、分类和分级。 机器学习 骨质疏松症 深度学习 ANN CT图像 训练数据集包含934张CT图像,测试数据集包含116张CT图像。
1017 2024-08-28
Diagnostic accuracy of CT-based radiomics and deep learning for predicting lymph node metastasis in esophageal cancer
2024-Sep, Clinical imaging IF:1.8Q3
meta-analysis 本文通过系统综述和荟萃分析,评估了基于CT的放射组学和深度学习在预测食管癌淋巴结转移中的诊断准确性 结合放射组学和深度学习与CT成像,为食管癌淋巴结转移的诊断提供了新的方法,有望革新预后评估和治疗计划 需要进一步的多中心研究与独立验证以确认结果并促进更广泛的临床应用 研究旨在提高食管癌淋巴结转移的诊断准确性 食管癌淋巴结转移的诊断 digital pathology 食管癌 CT-based radiomics, deep learning DL image 12项研究被综述,其中7项被纳入荟萃分析
1018 2024-08-28
MOCNN: A Multiscale Deep Convolutional Neural Network for ERP-Based Brain-Computer Interfaces
2024-Sep, IEEE transactions on cybernetics IF:9.4Q1
研究论文 本文提出了一种多尺度深度卷积神经网络(MOCNN),用于基于事件相关电位(ERP)的脑-机接口(BCI),通过多尺度特征融合提高分类性能 引入八度卷积的广义概念到ERP-BCI领域,通过分支宽度优化和多尺度信息交互有效提取时空特征 NA 提高基于ERP的脑-机接口的分类性能 ERP信号的多尺度时空特征 机器学习 NA 深度学习 CNN 信号 两个公共数据集和一个自收集的ERP数据集
1019 2024-08-28
A comparison of antibody-antigen complex sequence-to-structure prediction methods and their systematic biases
2024-Sep, Protein science : a publication of the Protein Society IF:4.5Q1
研究论文 本文比较了六种从序列预测抗体-抗原复合物结构的方法,并分析了它们的系统偏差 AlphaFold-Multimer在预测抗体-抗原复合物结构方面表现最佳,但仍有改进空间 当前结构数据库中界面几何数据的稀缺可能限制了机器学习在预测抗体-抗原相互作用中的应用 评估当前从序列预测抗体-抗原复合物结构的方法,并探讨其性能限制因素 六种不同的抗体-抗原复合物结构预测方法 机器学习 NA 机器学习 深度学习 序列数据 NA
1020 2024-08-27
An integrated CBLA-Net with fractional discrete wavelet transform and frequency-based CARS to predict heavy metal elements by XRF
2024-Sep-22, Analytica chimica acta IF:5.7Q1
研究论文 本文提出了一种综合框架,用于通过XRF预测土壤中重金属元素的浓度,包括预处理、变量选择和决策制定 引入了基于分数离散小波变换的最优去噪方法和基于频率的竞争自适应重加权采样算法进行特征选择,并设计了一种新的深度学习网络CBLA-Net,用于精确估计重金属元素浓度 NA 提高通过XRF技术预测土壤中重金属元素浓度的准确性 土壤中的重金属元素浓度 机器学习 NA XRF CBLA-Net 光谱数据 未具体说明样本数量
回到顶部