本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
141 | 2025-05-31 |
Poised PABP-RNA hubs implement signal-dependent mRNA decay in development
2024-Sep, Nature structural & molecular biology
IF:12.5Q1
DOI:10.1038/s41594-024-01363-x
PMID:39054355
|
研究论文 | 该研究利用深度学习解析了细胞信号通路如何通过改变基因表达实现快速转录组重编程的机制 | 揭示了LIN28A磷酸化后与PABP-RNA枢纽的相互作用如何选择性地触发mRNA降解,从而促进多能性状态的转变 | 研究主要聚焦于naive多能性mRNA的降解机制,可能不适用于其他类型的mRNA降解过程 | 探索信号通路如何通过mRNA降解机制快速重塑转录组 | naive多能性mRNA及其降解机制 | 分子生物学 | NA | 深度学习 | NA | 序列数据 | NA |
142 | 2025-05-31 |
Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics
2024-Sep, NAR genomics and bioinformatics
IF:4.0Q1
DOI:10.1093/nargab/lqae116
PMID:39211330
|
研究论文 | 介绍了一种名为RNAkinet的深度卷积和循环神经网络,用于检测经过代谢标记的新生RNA分子,并通过纳米孔直接RNA测序区分新生和已有RNA分子 | RNAkinet能够直接从纳米孔测序的电信号中处理并区分新生和已有RNA分子,适用于多种细胞类型和生物体,并能量化RNA亚型的半衰期 | NA | 揭示RNA亚型代谢的动力学参数,促进RNA代谢及其调控元件的研究 | RNA亚型 | 自然语言处理 | NA | 纳米孔直接RNA测序 | 深度卷积和循环神经网络 | RNA测序数据 | NA |
143 | 2025-05-31 |
Deep autoencoder-based behavioral pattern recognition outperforms standard statistical methods in high-dimensional zebrafish studies
2024-Sep, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1012423
PMID:39255309
|
研究论文 | 该研究利用深度自编码器识别斑马鱼行为模式,在高维行为数据分析中优于传统统计方法 | 使用半监督深度自编码器提取斑马鱼'正常'行为特征,并成功识别出传统方法未能捕捉的化学物质诱导异常行为 | 研究仅针对斑马鱼幼虫,结果是否适用于其他发育阶段或其他模式生物尚需验证 | 开发更有效的方法来分析斑马鱼高维行为数据,以更好地识别发育神经毒性化学物质 | 斑马鱼幼虫行为数据 | 机器学习 | 神经毒性 | 深度自编码器 | autoencoder | 行为数据 | 暴露于多种有毒化学物质(包括纳米材料、芳香族化合物、PFAS等)的斑马鱼幼虫行为数据 |
144 | 2025-05-31 |
Clinical and genetic associations of asymmetric apical and septal left ventricular hypertrophy
2024-Sep, European heart journal. Digital health
DOI:10.1093/ehjdh/ztae060
PMID:39318696
|
research paper | 本研究探讨了左心室不对称顶端和间隔肥厚的临床和遗传关联 | 使用深度学习衍生的表型研究左心室肥厚区域分布的遗传和临床关联,独立于总左心室质量 | 需要在多民族队列中进行进一步研究 | 研究左心室不对称肥厚的临床和遗传关联及其对心血管疾病风险的影响 | 35,268名UK Biobank参与者 | machine learning | cardiovascular disease | 深度学习 | NA | genetic and clinical data | 35,268名UK Biobank参与者 |
145 | 2025-05-31 |
Coronary Artery Stenosis and High-Risk Plaque Assessed With an Unsupervised Fully Automated Deep Learning Technique
2024-Sep, JACC. Advances
DOI:10.1016/j.jacadv.2024.100861
PMID:39372456
|
research paper | 开发并验证了一种全自动深度学习系统,用于在冠状动脉CT血管造影(CCTA)上评估狭窄程度和高风险斑块(HRP) | 提出了一种全自动、无监督的深度学习系统,能够快速评估冠状动脉狭窄程度和HRP,无需专业训练 | 研究样本量有限,且仅在特定患者群体中进行了验证 | 开发一种自动化工具,以提高CCTA在评估冠状动脉狭窄和HRP中的效率和准确性 | 冠状动脉狭窄和高风险斑块(HRP) | digital pathology | cardiovascular disease | deep learning | unsupervised deep learning | image | 570名患者用于训练,769名患者(3,012条血管)用于狭窄评估,45名患者(325条血管)用于HRP评估 |
146 | 2025-05-28 |
Olfactory Diagnosis Model for Lung Health Evaluation Based on Pyramid Pooling and SHAP-Based Dual Encoders
2024-09-27, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c01584
PMID:39248698
|
research paper | 本研究介绍了一种基于深度学习的创新框架,用于通过呼出气体评估肺部健康,该框架结合了金字塔池化和双编码器网络,利用SHAP特征重要性增强预测能力 | 提出了一种结合金字塔池化和SHAP特征重要性的双编码器网络框架,用于肺部健康评估,并通过滑动窗口技术和白噪声增强提高了模型的鲁棒性 | 未提及样本来源的多样性或模型在其他疾病上的泛化能力 | 开发一种高效工具,用于识别吸烟和慢性阻塞性肺疾病(COPD)的影响,并探索深度学习技术在复杂生物医学问题中的应用 | 吸烟者、慢性阻塞性肺疾病(COPD)患者和对照组受试者 | digital pathology | lung cancer | SHAP, 深度学习 | 双编码器网络, 金字塔池化 | 呼出气体数据 | 未明确提及具体样本数量 |
147 | 2025-05-26 |
Local Mean Suppression Filter for Effective Background Identification in Fluorescence Images
2024-Sep-26, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.25.614955
PMID:39386682
|
research paper | 提出了一种易于使用的非线性滤波器,用于在荧光显微镜图像中有效识别背景,特别适用于前景密集且对比度低的图像 | 通过比较像素强度与其局部邻域的平均强度,进行像素级滤波,并通过变化邻域大小生成多个标签,最终决定像素的最终标签 | 未提及具体局限性 | 开发一种有效的背景识别方法,用于荧光显微镜图像处理 | 荧光显微镜图像 | digital pathology | NA | 非线性滤波 | NA | image | 未提及具体样本数量 |
148 | 2025-05-25 |
Semi-supervised CT image segmentation via contrastive learning based on entropy constraints
2024-Sep, Biomedical engineering letters
IF:3.2Q2
DOI:10.1007/s13534-024-00387-y
PMID:39220023
|
research paper | 提出了一种基于熵约束对比学习的半监督CT图像分割方法,融合CNN和Transformer以提高未标记医学图像的利用率 | 设计了一种基于熵约束对比学习的半监督网络模型,融合CNN和Transformer捕捉图像的局部和全局特征信息,并引入残差压缩激励模块以提升分割性能 | 未明确提及具体局限性,但半监督方法可能依赖于伪标签的质量 | 提高CT图像的分割性能,特别是在标记数据有限的情况下 | CT图像 | digital pathology | COVID-19 | 对比学习 | CNN, Transformer | image | COVID-19 CT公共数据集 |
149 | 2025-05-24 |
Deep learning for rapid analysis of cell divisions in vivo during epithelial morphogenesis and repair
2024-Sep-23, eLife
IF:6.4Q1
DOI:10.7554/eLife.87949
PMID:39312468
|
research paper | 该研究开发了一种深度学习流程,用于自动识别和分析上皮组织中细胞分裂的动态特征 | 利用深度学习自动检测和量化细胞分裂的时空同步性和方向性,为组织生长和修复研究提供了新工具 | 研究仅针对果蝇蛹翼上皮组织,可能不适用于其他组织类型 | 研究细胞分裂在上皮组织形态发生和修复过程中的动态特征 | 果蝇蛹翼上皮组织中的细胞分裂事件 | digital pathology | NA | time-lapse microscopy | deep learning pipeline | video | 果蝇蛹翼上皮组织的时间序列影像数据 |
150 | 2025-05-21 |
Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet
2024-Sep-16, bioRxiv : the preprint server for biology
DOI:10.1101/2023.09.27.559876
PMID:37808751
|
研究论文 | 本文介绍了一种结合微流控技术和单物镜倾斜光片的3D多靶标单分子超分辨率成像方法 | 开发了可操纵、抖动的单物镜倾斜光片用于光学切片以减少荧光背景,并建立了3D纳米打印微流控系统反射光片到样本的流程 | NA | 提高全细胞多靶标3D单分子超分辨率成像的精度和速度 | 哺乳动物细胞 | 生物医学成像 | NA | 单分子超分辨率荧光显微镜、微流控技术、点扩散函数工程、深度学习、Exchange-PAINT | 深度学习 | 3D图像 | NA |
151 | 2025-05-21 |
Spatiotemporal transcriptomic landscape of rice embryonic cells during seed germination
2024-09-09, Developmental cell
IF:10.7Q1
DOI:10.1016/j.devcel.2024.05.016
PMID:38848718
|
研究论文 | 本研究利用Stereo-seq和scRNA-seq技术,结合深度学习细胞分割模型,揭示了水稻种子萌发过程中胚胎细胞的时空转录组图谱 | 首次报道了两种未发现的盾片细胞类型,并开发了新的深度学习方法用于细胞分割分析 | 仅研究了水稻这一种植物,结果可能不适用于其他物种 | 解析种子萌发过程中不同胚胎细胞类型的生物学功能 | 水稻胚胎细胞 | 植物分子生物学 | NA | Stereo-seq, scRNA-seq, 原位杂交 | 深度学习细胞分割模型 | 转录组数据 | 吸水后6、24、36和48小时的水稻胚胎样本 |
152 | 2025-05-21 |
Constructing analogies: Developing critical thinking through a collaborative task
2024 Sep-Oct, Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology
IF:1.2Q3
DOI:10.1002/bmb.21843
PMID:38850246
|
研究论文 | 探讨通过协作任务构建类比如何促进大学生的批判性思维发展 | 提出让学生自行构建复杂类比而非被动接受教师提供的简单类比,并通过配对协作显著提升批判性思维能力 | 样本量较小(n=30),且仅针对生物学领域遗传信息流动这一特定主题 | 验证学生自主构建复杂类比对批判性思维和内容知识整合的促进作用 | 大学生物专业学生(30人)的类比构建过程 | 教育学 | NA | 定性研究方法(访谈分析) | NA | 访谈文本 | 30名大学生物专业学生(其中20人配对协作,10人独立完成) |
153 | 2025-05-16 |
RNA language models predict mutations that improve RNA function
2024-Sep-16, bioRxiv : the preprint server for biology
DOI:10.1101/2024.04.05.588317
PMID:38617247
|
研究论文 | 该研究创建了一个名为GARNET的新数据库,用于RNA结构和功能分析,并开发了一种类似GPT的RNA语言模型,以预测提高RNA功能的突变 | 创建GARNET数据库,结合GTDB基因组数据与生物生长温度信息,开发了重叠三连体标记化的RNA生成模型,用于预测增强RNA功能的突变 | RNA结构预测目前仍缺乏充足的高质量参考数据 | 理解RNA序列、结构与功能之间的联系 | RNA序列及其功能 | 自然语言处理 | NA | 深度学习,RNA生成模型 | GPT-like语言模型 | RNA序列数据 | GTDB基因组数据中的RNA序列 |
154 | 2025-05-16 |
Evaluating cell type deconvolution in FFPE breast tissue: application to benign breast disease
2024-Sep, NAR genomics and bioinformatics
IF:4.0Q1
DOI:10.1093/nargab/lqae098
PMID:40162103
|
research paper | 评估FFPE乳腺组织中细胞类型去卷积方法的应用,特别是在良性乳腺疾病中的表现 | 构建了乳腺组织的单细胞RNA-seq参考数据,测试了多种去卷积方法,并发现深度学习为基础的Scaden方法在FFPE伪影影响下表现最优 | FFPE伪影显著影响了去卷积方法的性能,RMSE在0.04至0.17之间波动 | 优化从FFPE样本中定义单个细胞类型组成的策略 | 乳腺组织,特别是良性乳腺疾病样本 | digital pathology | breast cancer | RNA-seq, single-cell RNA-seq | deep learning (Scaden) | RNA-seq data | 62个良性乳腺疾病RNA-seq样本 |
155 | 2025-05-11 |
Automated analysis of fetal heart rate baseline/acceleration/deceleration using MTU-Net3 + model
2024-Sep, Biomedical engineering letters
IF:3.2Q2
DOI:10.1007/s13534-024-00388-x
PMID:39220035
|
研究论文 | 本研究提出了一种名为MTU-Net3+的深度学习模型,用于自动化分析胎儿心率(FHR)的基线、加速和减速,以提高诊断准确性和效率 | MTU-Net3+模型基于UNet3+架构,整合了自注意力机制和双向LSTM层,提升了性能 | 模型在公开数据集和私有数据集上的表现存在差异,可能受数据质量和多样性的影响 | 提高胎儿心率分析的自动化水平和诊断准确性 | 胎儿心率信号 | 数字病理 | 胎儿健康评估 | 深度学习 | MTU-Net3+(基于UNet3+架构,整合自注意力机制和双向LSTM) | 胎儿心率信号 | 公开数据库的子集和私有数据库 |
156 | 2025-05-08 |
Development of Machine Learning-Based Mpox Surveillance Models in a Learning Health System
2024-Sep-27, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.09.25.24314318
PMID:39399027
|
research paper | 开发机器学习和深度学习模型以从临床记录中识别猴痘病例 | 使用Lasso回归模型在减少假阳性方面表现优于深度学习模型 | 未提及模型在其他数据集上的泛化能力 | 开发用于猴痘病例监测的机器学习模型 | 临床记录中的猴痘病例 | machine learning | 猴痘 | machine learning, deep learning | Lasso regression, deep learning models | text | NA |
157 | 2025-05-04 |
Dendrites endow artificial neural networks with accurate, robust and parameter-efficient learning
2024-Sep-13, ArXiv
PMID:39314509
|
研究论文 | 本文提出了一种新型的人工神经网络架构,通过融入生物树突的结构化连接和受限采样特性,提高了学习精度、鲁棒性和参数效率 | 引入生物树突的特性到人工神经网络中,解决了传统深度学习算法参数过多、易过拟合的问题 | 未提及具体的应用场景限制或实验数据的局限性 | 提升人工神经网络的学习效率、鲁棒性和参数效率 | 人工神经网络(ANNs)及其学习策略 | 机器学习 | NA | NA | dendritic ANNs | 图像数据 | 未提及具体样本数量 |
158 | 2025-05-03 |
Predicting metabolite response to dietary intervention using deep learning
2024-Sep-19, bioRxiv : the preprint server for biology
DOI:10.1101/2023.03.14.532589
PMID:36993761
|
研究论文 | 开发了一种名为McMLP的深度学习方法,用于预测个体对饮食干预的代谢物反应 | 首次提出使用耦合多层感知器(McMLP)来预测代谢物反应,填补了深度学习在该领域的空白 | NA | 实现精准营养,通过预测个体对饮食干预的代谢物反应来设计个性化的饮食策略 | 个体的肠道微生物组成及其对食物和营养素的代谢物反应 | 机器学习 | NA | 深度学习 | McMLP(耦合多层感知器) | 合成数据和真实数据 | 来自六项饮食干预研究的真实数据 |
159 | 2025-05-02 |
A Practical Roadmap to Implementing Deep Learning Segmentation in the Clinical Neuroimaging Research Workflow
2024-09, World neurosurgery
IF:1.9Q2
DOI:10.1016/j.wneu.2024.06.026
PMID:38866234
|
research paper | 本文探讨了一种利用开源工具加速和增强临床研究中图像分割的通用方法 | 提出了一种迭代的模型训练和迁移学习方法,强调在标记过程的早期进行内部验证和异常值处理,后期进行微调 | NA | 为使用机器学习技术进行图像分割的研究提供加速和增强可重复性的框架 | 临床神经影像研究中的图像分割 | machine learning | NA | deep learning | NA | image | NA |
160 | 2025-05-01 |
Detection and classification of mandibular fractures in panoramic radiography using artificial intelligence
2024-09-01, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae018
PMID:38652576
|
研究论文 | 本研究评估了YOLOv5深度学习模型在全景X光片中检测不同类型下颌骨骨折的性能 | 使用YOLOv5模型对六种下颌骨骨折类型进行检测和分类,特别是在体和联合区域表现出色 | 在检测髁突头和髁突颈骨折时表现较差,精度和灵敏度较低 | 评估人工智能在全景X光片中检测和分类下颌骨骨折的潜力 | 下颌骨骨折的全景X光片 | 计算机视觉 | 下颌骨骨折 | 深度学习 | YOLOv5 | 图像 | 498张全景X光片,包含673处骨折 |