深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202410-202410] [清除筛选条件]
当前共找到 1183 篇文献,本页显示第 661 - 680 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
661 2024-10-21
Supervised machine learning of outbred mouse genotypes to predict hepatic immunological tolerance of individuals
2024-Oct-17, Scientific reports IF:3.8Q1
研究论文 研究利用监督机器学习方法,通过分析杂交小鼠的基因型来预测个体对肝脏移植的免疫耐受性 利用杂交CD1小鼠的高度异质性基因型,构建预测肝脏同种异体移植结果的模型,并首次使用深度学习和线性分类方法进行预测 研究仅限于小鼠模型,尚未在人类中验证 阐明肝脏移植耐受和排斥的分子机制,并开发预测模型 杂交CD1小鼠的基因型及其对肝脏移植的免疫反应 机器学习 NA 全外显子测序 一维卷积神经网络和线性分类 基因型数据 36只小鼠
662 2024-10-21
A convolutional attention model for predicting response to chemo-immunotherapy from ultrasound elastography in mouse tumor models
2024-Oct-17, Communications medicine IF:5.4Q1
研究论文 研究利用超声弹性成像和卷积注意力模型预测小鼠肿瘤模型对化疗免疫疗法的反应 结合剪切波弹性成像和深度学习模型,提出了一种新的方法来预测肿瘤对治疗的反应 研究主要集中在特定的肿瘤类型(desmoplastic肿瘤),可能不适用于所有肿瘤类型 探索肿瘤力学和医学影像作为预测生物标志物的潜力,以提高个性化癌症治疗的效果 小鼠肿瘤模型对化疗免疫疗法的反应 计算机视觉 NA 剪切波弹性成像 卷积神经网络(CNN) 图像 1365张剪切波弹性成像图像,来自630个肿瘤
663 2024-10-21
Fault diagnosis of reducers based on digital twins and deep learning
2024-Oct-17, Scientific reports IF:3.8Q1
研究论文 提出了一种基于数字孪生和深度学习的减速器故障诊断新方法 结合数字孪生高保真行为和深度学习数据挖掘能力,提出了FDGAN模型,并通过MobileViG验证了模型的故障诊断效果 NA 解决减速器故障诊断问题 减速器故障 机器学习 NA 深度学习 GAN 数据 600和800个训练样本
664 2024-10-21
Semi-supervised segmentation of cardiac chambers from LGE-CMR using feature consistency awareness
2024-Oct-17, BMC cardiovascular disorders IF:2.0Q3
研究论文 本文提出了一种半监督网络,通过整合三重一致性约束(数据级、任务级和特征级)来分割心脏腔室 本文创新性地引入了特征一致性约束,帮助模型关注之前研究中忽略的特征一致性问题 实验结果仅在特定数据集上进行了验证,尚未在更广泛的数据集上进行测试 开发一种半监督分割方法,利用未标记数据提高模型性能 心脏腔室的分割 计算机视觉 心血管疾病 NA 半监督网络 图像 10% 和 20% 标记数据
665 2024-10-21
Multimodal deep learning radiomics model for predicting postoperative progression in solid stage I non-small cell lung cancer
2024-Oct-17, Cancer imaging : the official publication of the International Cancer Imaging Society IF:3.5Q1
研究论文 探讨多模态深度学习放射组学模型在预测I期非小细胞肺癌术后进展风险中的应用价值 构建了结合临床病理特征、主观CT发现和深度学习特征的多模态深度学习放射组学模型,显著提高了预测I期非小细胞肺癌术后进展风险的准确性 研究样本主要来自单一机构,外部验证集较小,可能影响模型的泛化能力 预测I期非小细胞肺癌术后进展风险,辅助治疗和随访 I期非小细胞肺癌患者 机器学习 肺癌 极端学习机分类器 ResNet18 图像 459例患者用于训练和内部验证,104例患者用于外部验证
666 2024-10-21
Enhancing diffusion-weighted prostate MRI through self-supervised denoising and evaluation
2024-10-16, Scientific reports IF:3.8Q1
研究论文 本文提出了一种自监督的去噪方法,用于增强扩散加权前列腺MRI图像的质量 本文提出了一种基于Stein's unbiased risk estimator (SURE)的自监督去噪方法,无需真实数据即可实现去噪,并展示了在减少图像重复采集次数的情况下加速DWI扫描的应用 NA 提高扩散加权成像(DWI)在前列腺MRI中的诊断价值 扩散加权成像(DWI)图像的去噪和评估 计算机视觉 前列腺癌 扩散加权成像(DWI) NA 图像 NA
667 2024-10-21
Driving fingerprinting enhances drowsy driving detection: Tailoring to individual driver characteristics
2024-Oct-16, Accident; analysis and prevention
研究论文 本文提出了一种利用驾驶指纹(DF)个性化检测驾驶员疲劳的模型,通过提取个体驾驶员的最佳疲劳特征来提高检测准确性 本文创新性地引入了驾驶指纹(DF)来代表个体特征,并利用改进的自适应遗传算法提取个体驾驶员的最佳疲劳特征,从而提高检测准确性和实时性 本文提出的模型在实际应用中仍面临与现有系统集成和隐私保护的挑战 提高驾驶员疲劳检测的准确性和个性化程度,以预防疲劳驾驶相关事故 24名参与者(男女比例2:1,包括专业出租车司机和研究生)的驾驶行为、面部表情和卡罗林斯卡嗜睡量表(KSS)数据 计算机视觉 NA 驾驶指纹(DF)、主成分分析(PCA)、径向基函数神经网络(RBFNN) 个性化疲劳驾驶检测模型(IDDM) 驾驶行为数据、面部表情数据、卡罗林斯卡嗜睡量表(KSS)数据 24名参与者(男女比例2:1,包括专业出租车司机和研究生)
668 2024-10-21
Duodenal papilla radiomics-based prediction model for post-ERCP pancreatitis using machine learning: a retrospective multicohort study
2024-Oct, Gastrointestinal endoscopy IF:6.7Q1
研究论文 本文研究了十二指肠乳头形态与ERCP术后胰腺炎(PEP)之间的关系,并构建了一个基于放射组学的PEP预测模型 本文首次利用放射组学特征结合机器学习算法,构建了一个预测ERCP术后胰腺炎的模型,显著提高了诊断准确性 本文为回顾性研究,样本量有限,且仅在两个中心进行验证,未来需在更多中心进行前瞻性研究以验证模型的普适性 研究十二指肠乳头形态与ERCP术后胰腺炎之间的关系,并构建一个有效的预测模型 十二指肠乳头形态和ERCP术后胰腺炎 机器学习 胰腺炎 放射组学 逻辑回归 图像 2038和334名ERCP患者
669 2024-10-21
Data set terminology of deep learning in medicine: a historical review and recommendation
2024-Oct, Japanese journal of radiology IF:2.9Q2
综述 本文回顾了医学和深度学习领域中数据集术语的历史演变,并提出了减少术语混淆的建议 本文通过历史文献的考察,揭示了医学和AI领域中数据集术语的差异,并提出了减少误解的实用解决方案 本文主要关注数据集术语的历史和定义,未涉及具体的技术实现或模型评估 旨在减少医学和深度学习领域中数据集术语的混淆,促进跨学科研究的透明性和有效性 医学和深度学习领域中的数据集术语及其历史演变 机器学习 NA NA NA NA NA
670 2024-10-21
Accuracy and time efficiency of a novel deep learning algorithm for Intracranial Hemorrhage detection in CT Scans
2024-Oct, La Radiologia medica
研究论文 评估一种基于Dense-UNet架构的深度学习算法在非对比CT扫描中检测急性颅内出血(ICH)的准确性和时间效率 提出了一种新的深度学习算法,使用Dense-UNet架构,能够高准确度地检测和分类颅内出血,并且处理时间显著缩短 研究是回顾性的,样本量有限,且仅限于创伤性脑损伤(TBI)后的非对比CT扫描 评估深度学习算法在非对比CT扫描中检测急性颅内出血的准确性和时间效率 502例非对比CT头部扫描,涉及创伤性脑损伤后的急性颅内出血 计算机视觉 颅内出血 深度学习 Dense-UNet 图像 502例非对比CT头部扫描
671 2024-09-06
Advancing MRI Technology with Deep Learning Super Resolution Reconstruction
2024-Oct, Academic radiology IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
672 2024-10-21
Computational modeling of tumor invasion from limited and diverse data in Glioblastoma
2024-Oct, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 本文提出了一种使用生成对抗网络(TI-GAN)自动计算建模肿瘤周围受影响组织的方法 首次使用生成深度学习自动化建模肿瘤周围受影响组织,并提出TI-GAN模型 NA 研究肿瘤侵袭对周围组织的影响,并评估其预后价值 胶质母细胞瘤患者的肿瘤侵袭及其对周围组织的影响 计算机视觉 脑肿瘤 生成对抗网络(GAN) 生成对抗网络(TI-GAN) 图像 NA
673 2024-10-21
Main challenges on the curation of large scale datasets for pancreas segmentation using deep learning in multi-phase CT scans: Focus on cardinality, manual refinement, and annotation quality
2024-Oct, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 研究探讨了在多相CT扫描中使用深度学习进行胰腺分割的大规模数据集的优化问题 提出了AIMS-1300数据集,并研究了不同训练样本数量对分割精度的影响 研究主要集中在特定数据集和模型上,未广泛验证其他数据集和模型的适用性 优化胰腺分割的准确性,并探讨数据集大小对分割性能的影响 胰腺分割在多相CT扫描中的应用 计算机视觉 NA 深度学习 UNet CT扫描图像 1300个CT扫描图像
674 2024-10-20
Post-Stroke Dysarthria Voice Recognition based on Fusion Feature MSA and 1D
2024-Oct-18, Computer methods in biomechanics and biomedical engineering IF:1.7Q3
研究论文 提出了一种基于融合特征MSA和改进的1D ResNet网络的深度学习模型,用于识别中风后构音障碍的语音 引入了新的融合特征MSA和改进的1D ResNet网络,结合了双向LSTM和扩张卷积,提高了病理语音识别的准确性 NA 提高中风后构音障碍语音识别的准确性,以帮助评估和诊断 中风后构音障碍的病理语音和正常语音 机器学习 中风 深度学习 1D DRN-biLSTM 语音 NA
675 2024-10-20
Investigation on Melting Curves and Phase Diagrams for CaO3 Using Deep Learning Potentials
2024-Oct-18, The journal of physical chemistry. A
研究论文 研究了CaO的熔化曲线和压力-温度相图,使用深度学习势能模型 采用深度学习势能模型来研究CaO的熔化曲线和相图 NA 理解行星内部动力学和行星演化的历史及机制 CaO的熔化曲线和压力-温度相图 NA NA 深度学习势能模型 深度学习 NA NA
676 2024-10-20
Exploring "dark-matter" protein folds using deep learning
2024-Oct-16, Cell systems IF:9.0Q1
研究论文 本文介绍了一种使用深度学习探索未知蛋白质折叠结构的方法 提出了一个卷积变分自编码器Genesis,能够学习蛋白质结构的特征,并成功应用于设计五种天然折叠和三种新型折叠结构 未提及具体的局限性 探索和设计未知的蛋白质折叠结构 蛋白质折叠结构及其设计 机器学习 NA 深度学习 卷积变分自编码器 蛋白质结构数据 五种天然折叠和三种新型折叠结构
677 2024-10-20
Automated segment-level coronary artery calcium scoring on non-contrast CT: a multi-task deep-learning approach
2024-Oct-16, Insights into imaging IF:4.1Q1
研究论文 本文开发并评估了一种多任务深度学习模型,用于在非对比CT上自动进行冠状动脉钙化(CAC)的分段评分 提出了一种多任务深度学习模型,用于在非对比CT上自动进行冠状动脉钙化的分段评分,实现了精确的钙化定位和量化 NA 开发和评估一种多任务深度学习模型,用于在非对比CT上自动进行冠状动脉钙化的分段评分 冠状动脉钙化的分段评分 计算机视觉 心血管疾病 深度学习 多任务神经网络 图像 1514名患者,其中1059名用于训练/验证,455名用于测试
678 2024-10-20
Assessing the deep learning based image quality enhancements for the BGO based GE omni legend PET/CT
2024-Oct-16, EJNMMI physics IF:3.0Q2
研究论文 本研究评估了基于深度学习的图像质量增强技术在GE Omni Legend PET/CT扫描仪中的应用 本研究首次探讨了深度学习技术在补偿GE Omni Legend PET/CT扫描仪缺乏飞行时间(TOF)方面的应用 本研究仅使用了NEMA IQ phantom进行评估,未涵盖所有可能的临床应用场景 评估深度学习算法在GE Omni Legend PET/CT扫描仪中的图像质量增强效果 GE Omni Legend PET/CT扫描仪的图像质量 计算机视觉 NA 深度学习 NA 图像 使用NEMA IQ phantom进行评估,并展示了患者图像
679 2024-10-18
Correction: Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T
2024-Oct-16, European radiology experimental IF:3.7Q1
NA NA NA NA NA NA NA NA NA NA NA NA
680 2024-10-20
AnEEG: leveraging deep learning for effective artifact removal in EEG data
2024-10-16, Scientific reports IF:3.8Q1
研究论文 本文提出了一种名为AnEEG的深度学习方法,用于去除脑电图(EEG)数据中的伪影 本文的创新点在于提出了一种新的深度学习方法AnEEG,用于有效去除EEG数据中的伪影,并通过多种量化指标验证了其有效性 NA 本文的研究目的是提高脑电图数据的质量,通过去除伪影来增强信号的可用性 本文的研究对象是脑电图(EEG)数据及其中的伪影 机器学习 NA 深度学习 深度学习模型 脑电图数据 NA
回到顶部