本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
681 | 2024-10-21 |
Enhancing diffusion-weighted prostate MRI through self-supervised denoising and evaluation
2024-10-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-75007-x
PMID:39414914
|
研究论文 | 本文提出了一种自监督的去噪方法,用于增强扩散加权前列腺MRI图像的质量 | 本文提出了一种基于Stein's unbiased risk estimator (SURE)的自监督去噪方法,无需真实数据即可实现去噪,并展示了在减少图像重复采集次数的情况下加速DWI扫描的应用 | NA | 提高扩散加权成像(DWI)在前列腺MRI中的诊断价值 | 扩散加权成像(DWI)图像的去噪和评估 | 计算机视觉 | 前列腺癌 | 扩散加权成像(DWI) | NA | 图像 | NA |
682 | 2024-10-21 |
Driving fingerprinting enhances drowsy driving detection: Tailoring to individual driver characteristics
2024-Oct-16, Accident; analysis and prevention
DOI:10.1016/j.aap.2024.107812
PMID:39423716
|
研究论文 | 本文提出了一种利用驾驶指纹(DF)个性化检测驾驶员疲劳的模型,通过提取个体驾驶员的最佳疲劳特征来提高检测准确性 | 本文创新性地引入了驾驶指纹(DF)来代表个体特征,并利用改进的自适应遗传算法提取个体驾驶员的最佳疲劳特征,从而提高检测准确性和实时性 | 本文提出的模型在实际应用中仍面临与现有系统集成和隐私保护的挑战 | 提高驾驶员疲劳检测的准确性和个性化程度,以预防疲劳驾驶相关事故 | 24名参与者(男女比例2:1,包括专业出租车司机和研究生)的驾驶行为、面部表情和卡罗林斯卡嗜睡量表(KSS)数据 | 计算机视觉 | NA | 驾驶指纹(DF)、主成分分析(PCA)、径向基函数神经网络(RBFNN) | 个性化疲劳驾驶检测模型(IDDM) | 驾驶行为数据、面部表情数据、卡罗林斯卡嗜睡量表(KSS)数据 | 24名参与者(男女比例2:1,包括专业出租车司机和研究生) |
683 | 2024-10-21 |
Duodenal papilla radiomics-based prediction model for post-ERCP pancreatitis using machine learning: a retrospective multicohort study
2024-Oct, Gastrointestinal endoscopy
IF:6.7Q1
DOI:10.1016/j.gie.2024.03.031
PMID:38583542
|
研究论文 | 本文研究了十二指肠乳头形态与ERCP术后胰腺炎(PEP)之间的关系,并构建了一个基于放射组学的PEP预测模型 | 本文首次利用放射组学特征结合机器学习算法,构建了一个预测ERCP术后胰腺炎的模型,显著提高了诊断准确性 | 本文为回顾性研究,样本量有限,且仅在两个中心进行验证,未来需在更多中心进行前瞻性研究以验证模型的普适性 | 研究十二指肠乳头形态与ERCP术后胰腺炎之间的关系,并构建一个有效的预测模型 | 十二指肠乳头形态和ERCP术后胰腺炎 | 机器学习 | 胰腺炎 | 放射组学 | 逻辑回归 | 图像 | 2038和334名ERCP患者 |
684 | 2024-10-21 |
Data set terminology of deep learning in medicine: a historical review and recommendation
2024-Oct, Japanese journal of radiology
IF:2.9Q2
DOI:10.1007/s11604-024-01608-1
PMID:38856878
|
综述 | 本文回顾了医学和深度学习领域中数据集术语的历史演变,并提出了减少术语混淆的建议 | 本文通过历史文献的考察,揭示了医学和AI领域中数据集术语的差异,并提出了减少误解的实用解决方案 | 本文主要关注数据集术语的历史和定义,未涉及具体的技术实现或模型评估 | 旨在减少医学和深度学习领域中数据集术语的混淆,促进跨学科研究的透明性和有效性 | 医学和深度学习领域中的数据集术语及其历史演变 | 机器学习 | NA | NA | NA | NA | NA |
685 | 2024-10-21 |
Accuracy and time efficiency of a novel deep learning algorithm for Intracranial Hemorrhage detection in CT Scans
2024-Oct, La Radiologia medica
DOI:10.1007/s11547-024-01867-y
PMID:39123064
|
研究论文 | 评估一种基于Dense-UNet架构的深度学习算法在非对比CT扫描中检测急性颅内出血(ICH)的准确性和时间效率 | 提出了一种新的深度学习算法,使用Dense-UNet架构,能够高准确度地检测和分类颅内出血,并且处理时间显著缩短 | 研究是回顾性的,样本量有限,且仅限于创伤性脑损伤(TBI)后的非对比CT扫描 | 评估深度学习算法在非对比CT扫描中检测急性颅内出血的准确性和时间效率 | 502例非对比CT头部扫描,涉及创伤性脑损伤后的急性颅内出血 | 计算机视觉 | 颅内出血 | 深度学习 | Dense-UNet | 图像 | 502例非对比CT头部扫描 |
686 | 2024-09-06 |
Advancing MRI Technology with Deep Learning Super Resolution Reconstruction
2024-Oct, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.08.046
PMID:39232913
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
687 | 2024-10-21 |
Computational modeling of tumor invasion from limited and diverse data in Glioblastoma
2024-Oct, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 本文提出了一种使用生成对抗网络(TI-GAN)自动计算建模肿瘤周围受影响组织的方法 | 首次使用生成深度学习自动化建模肿瘤周围受影响组织,并提出TI-GAN模型 | NA | 研究肿瘤侵袭对周围组织的影响,并评估其预后价值 | 胶质母细胞瘤患者的肿瘤侵袭及其对周围组织的影响 | 计算机视觉 | 脑肿瘤 | 生成对抗网络(GAN) | 生成对抗网络(TI-GAN) | 图像 | NA |
688 | 2024-10-21 |
Main challenges on the curation of large scale datasets for pancreas segmentation using deep learning in multi-phase CT scans: Focus on cardinality, manual refinement, and annotation quality
2024-Oct, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 研究探讨了在多相CT扫描中使用深度学习进行胰腺分割的大规模数据集的优化问题 | 提出了AIMS-1300数据集,并研究了不同训练样本数量对分割精度的影响 | 研究主要集中在特定数据集和模型上,未广泛验证其他数据集和模型的适用性 | 优化胰腺分割的准确性,并探讨数据集大小对分割性能的影响 | 胰腺分割在多相CT扫描中的应用 | 计算机视觉 | NA | 深度学习 | UNet | CT扫描图像 | 1300个CT扫描图像 |
689 | 2024-10-20 |
Post-Stroke Dysarthria Voice Recognition based on Fusion Feature MSA and 1D
2024-Oct-18, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2024.2410228
PMID:39422438
|
研究论文 | 提出了一种基于融合特征MSA和改进的1D ResNet网络的深度学习模型,用于识别中风后构音障碍的语音 | 引入了新的融合特征MSA和改进的1D ResNet网络,结合了双向LSTM和扩张卷积,提高了病理语音识别的准确性 | NA | 提高中风后构音障碍语音识别的准确性,以帮助评估和诊断 | 中风后构音障碍的病理语音和正常语音 | 机器学习 | 中风 | 深度学习 | 1D DRN-biLSTM | 语音 | NA |
690 | 2024-10-20 |
Investigation on Melting Curves and Phase Diagrams for CaO3 Using Deep Learning Potentials
2024-Oct-18, The journal of physical chemistry. A
DOI:10.1021/acs.jpca.4c03074
PMID:39423322
|
研究论文 | 研究了CaO的熔化曲线和压力-温度相图,使用深度学习势能模型 | 采用深度学习势能模型来研究CaO的熔化曲线和相图 | NA | 理解行星内部动力学和行星演化的历史及机制 | CaO的熔化曲线和压力-温度相图 | NA | NA | 深度学习势能模型 | 深度学习 | NA | NA |
691 | 2024-10-20 |
Exploring "dark-matter" protein folds using deep learning
2024-Oct-16, Cell systems
IF:9.0Q1
DOI:10.1016/j.cels.2024.09.006
PMID:39383860
|
研究论文 | 本文介绍了一种使用深度学习探索未知蛋白质折叠结构的方法 | 提出了一个卷积变分自编码器Genesis,能够学习蛋白质结构的特征,并成功应用于设计五种天然折叠和三种新型折叠结构 | 未提及具体的局限性 | 探索和设计未知的蛋白质折叠结构 | 蛋白质折叠结构及其设计 | 机器学习 | NA | 深度学习 | 卷积变分自编码器 | 蛋白质结构数据 | 五种天然折叠和三种新型折叠结构 |
692 | 2024-10-20 |
Automated segment-level coronary artery calcium scoring on non-contrast CT: a multi-task deep-learning approach
2024-Oct-16, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-024-01827-0
PMID:39412613
|
研究论文 | 本文开发并评估了一种多任务深度学习模型,用于在非对比CT上自动进行冠状动脉钙化(CAC)的分段评分 | 提出了一种多任务深度学习模型,用于在非对比CT上自动进行冠状动脉钙化的分段评分,实现了精确的钙化定位和量化 | NA | 开发和评估一种多任务深度学习模型,用于在非对比CT上自动进行冠状动脉钙化的分段评分 | 冠状动脉钙化的分段评分 | 计算机视觉 | 心血管疾病 | 深度学习 | 多任务神经网络 | 图像 | 1514名患者,其中1059名用于训练/验证,455名用于测试 |
693 | 2024-10-20 |
Assessing the deep learning based image quality enhancements for the BGO based GE omni legend PET/CT
2024-Oct-16, EJNMMI physics
IF:3.0Q2
DOI:10.1186/s40658-024-00688-2
PMID:39412633
|
研究论文 | 本研究评估了基于深度学习的图像质量增强技术在GE Omni Legend PET/CT扫描仪中的应用 | 本研究首次探讨了深度学习技术在补偿GE Omni Legend PET/CT扫描仪缺乏飞行时间(TOF)方面的应用 | 本研究仅使用了NEMA IQ phantom进行评估,未涵盖所有可能的临床应用场景 | 评估深度学习算法在GE Omni Legend PET/CT扫描仪中的图像质量增强效果 | GE Omni Legend PET/CT扫描仪的图像质量 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 使用NEMA IQ phantom进行评估,并展示了患者图像 |
694 | 2024-10-18 |
Correction: Efficacy of compressed sensing and deep learning reconstruction for adult female pelvic MRI at 1.5 T
2024-Oct-16, European radiology experimental
IF:3.7Q1
DOI:10.1186/s41747-024-00521-6
PMID:39414662
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
695 | 2024-10-20 |
AnEEG: leveraging deep learning for effective artifact removal in EEG data
2024-10-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-75091-z
PMID:39414897
|
研究论文 | 本文提出了一种名为AnEEG的深度学习方法,用于去除脑电图(EEG)数据中的伪影 | 本文的创新点在于提出了一种新的深度学习方法AnEEG,用于有效去除EEG数据中的伪影,并通过多种量化指标验证了其有效性 | NA | 本文的研究目的是提高脑电图数据的质量,通过去除伪影来增强信号的可用性 | 本文的研究对象是脑电图(EEG)数据及其中的伪影 | 机器学习 | NA | 深度学习 | 深度学习模型 | 脑电图数据 | NA |
696 | 2024-10-20 |
Integrated multicenter deep learning system for prognostic prediction in bladder cancer
2024-Oct-16, NPJ precision oncology
IF:6.8Q1
DOI:10.1038/s41698-024-00731-6
PMID:39414931
|
研究论文 | 开发并验证了一种端到端的深度学习系统,利用组织学切片预测膀胱癌患者的总体生存风险 | 提出了BlaPaSeg切片分类器生成组织概率热图和分割图,并训练了两个预测网络MacroVisionNet和UniVisionNet,探索了六个潜在的膀胱癌预后生物标志物 | NA | 提高膀胱癌生存预测的准确性,支持精细化患者管理 | 膀胱癌患者的总体生存风险 | 机器学习 | 膀胱癌 | 深度学习 | CNN | 图像 | 多个队列的膀胱癌患者 |
697 | 2024-10-20 |
Deep learning to combat knee osteoarthritis and severity assessment by using CNN-based classification
2024-Oct-16, BMC musculoskeletal disorders
IF:2.2Q3
DOI:10.1186/s12891-024-07942-9
PMID:39415217
|
研究论文 | 本研究利用基于卷积神经网络(CNN)的深度学习方法来对抗膝关节骨性关节炎(KOA)并评估其严重程度 | 本研究提出了一种专门为二分类和KOA严重程度评估设计的复杂CNN架构,并在二分类和多分类任务中均表现出色 | 本研究仅使用了Osteoarthritis Initiative(OAI)的数据集,未来需要扩展到更多数据集和场景 | 开发一种基于深度学习的膝关节骨性关节炎检测和分类方法 | 膝关节骨性关节炎及其严重程度 | 计算机视觉 | 骨关节炎 | 卷积神经网络(CNN) | CNN | 图像 | 使用了Osteoarthritis Initiative(OAI)的数据集 |
698 | 2024-10-20 |
Deep Learning-Enhanced Paper-Based Vertical Flow Assay for High-Sensitivity Troponin Detection Using Nanoparticle Amplification
2024-Oct-15, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.4c05153
PMID:39365271
|
研究论文 | 本文介绍了一种基于深度学习的纸基垂直流分析法,用于高灵敏度检测心脏肌钙蛋白I | 结合纳米颗粒放大技术、成像和数据处理,提高了POCT的灵敏度和精确度 | NA | 提高POCT的灵敏度和精确度,以满足临床标准 | 心脏肌钙蛋白I的定量测量 | 生物传感 | 心血管疾病 | 纳米颗粒放大技术 | 深度学习 | 图像 | 患者样本 |
699 | 2024-10-20 |
Deep and shallow feature fusion framework for remote sensing open pit coal mine scene recognition
2024-Oct-15, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-72855-5
PMID:39406759
|
研究论文 | 本文提出了一种用于遥感露天煤矿场景识别的深度与浅层特征融合框架 | 通过邻域特征注意力模块和图卷积网络模块增强深度特征,并结合灰度共生矩阵和Gabor滤波器提取浅层特征,实现了高精度和低样本依赖的场景识别 | NA | 提高露天煤矿区域土地利用和破坏的识别精度,以支持科学监管和管理 | 遥感图像中的露天煤矿场景 | 计算机视觉 | NA | 图卷积网络(GCN)、灰度共生矩阵(GLCM)、Gabor滤波器 | 支持向量机(SVM) | 图像 | 使用了AID和RSSCN7数据集进行评估 |
700 | 2024-10-20 |
Differential diagnosis of congenital ventricular septal defect and atrial septal defect in children using deep learning-based analysis of chest radiographs
2024-Oct-15, BMC pediatrics
IF:2.0Q2
DOI:10.1186/s12887-024-05141-y
PMID:39407181
|
研究论文 | 本研究评估了基于深度学习的胸部X光片分析在儿童房间隔缺损和室间隔缺损鉴别诊断中的效果 | 本研究首次使用深度学习模型对胸部X光片进行分析,以区分儿童的房间隔缺损和室间隔缺损 | 本研究为回顾性研究,样本量有限,且仅限于特定类型的先天性心脏病 | 评估深度学习分析胸部X光片在儿童房间隔缺损和室间隔缺损鉴别诊断中的有效性 | 儿童房间隔缺损和室间隔缺损的鉴别诊断 | 计算机视觉 | 先天性心脏病 | 深度学习 | ResNet-CBAM, InceptionV3, EfficientNet, ViT | 图像 | 1194名患者的胸部X光片和相应的放射学报告 |