本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61 | 2025-03-21 |
A deep profile of gene expression across 18 human cancers
2024-Oct-26, bioRxiv : the preprint server for biology
DOI:10.1101/2024.03.17.585426
PMID:38559197
|
研究论文 | 本文介绍了DeepProfile,一个用于从18种人类癌症的50,211个转录组中学习低维潜在空间的综合框架 | DeepProfile在生物解释性方面优于现有的降维方法,并揭示了跨所有癌症类型普遍重要的基因控制免疫细胞激活,而癌症类型特异性基因和通路定义了分子疾病亚型 | NA | 应用无监督深度学习从基因表达数据中提取临床和生物学上有价值的信息 | 18种人类癌症的50,211个转录组 | 机器学习 | 癌症 | 无监督深度学习 | DeepProfile | 基因表达数据 | 50,211个转录组 |
62 | 2025-03-21 |
Evolution of white matter hyperintensity segmentation methods and implementation over the past two decades; an incomplete shift towards deep learning
2024-Oct, Brain imaging and behavior
IF:2.4Q2
DOI:10.1007/s11682-024-00902-w
PMID:39083144
|
系统综述 | 本文系统回顾了过去二十年中白质高信号(WMH)分割方法的演变和实施情况,重点关注了深度学习的应用 | 本文首次系统性地回顾了WMH分割方法的发展历程,并特别指出了深度学习技术的兴起 | 尽管定量分割方法日益复杂,视觉评分量表仍然广泛使用,且SPM技术作为参考标准可能限制了新技术的推广 | 探讨WMH分割方法的演变和实施情况,特别是深度学习的应用 | 白质高信号(WMH)分割方法 | 医学影像分析 | 老年疾病 | 深度学习 | NA | 医学影像 | 1007个视觉评分量表,118篇管道开发文章,509篇实施文章 |
63 | 2025-03-19 |
Prediction of Ischemic Stroke Functional Outcomes from Acute-Phase Noncontrast CT and Clinical Information
2024-Oct, Radiology
IF:12.1Q1
DOI:10.1148/radiol.240137
PMID:39404632
|
研究论文 | 本文提出了一种基于深度学习的模型,结合急性期非增强CT和临床信息预测缺血性卒中90天后的改良Rankin量表(mRS)评分 | 创新点在于融合了非增强CT和临床信息的深度学习模型,相比仅使用影像或临床信息的模型,预测效果更优 | 研究为回顾性研究,可能存在数据偏差,且样本量相对有限 | 预测缺血性卒中患者90天后的功能结局,以辅助医疗资源规划、临床试验设计和患者期望管理 | 缺血性卒中患者 | 数字病理学 | 心血管疾病 | 深度学习 | 深度学习模型 | 影像数据(非增强CT)和临床数据 | 1335名患者(中位年龄71岁,674名女性),分为训练集、验证集和测试集 |
64 | 2025-03-16 |
An artificial intelligence-driven scoring system to measure histological disease activity in ulcerative colitis
2024-10, United European gastroenterology journal
IF:5.8Q1
DOI:10.1002/ueg2.12562
PMID:38590110
|
研究论文 | 本研究开发了一种基于人工智能的评分系统,用于测量溃疡性结肠炎的组织学疾病活动 | 使用先进的图像处理和机器学习算法开发了一种新型AI算法,用于自动测量基于Nancy指数的组织学疾病活动 | 研究仅使用了200张组织学图像,样本量相对较小 | 研究目的是开发一种AI系统,用于自动评估溃疡性结肠炎的组织学疾病活动 | 溃疡性结肠炎患者的组织学图像 | 数字病理学 | 溃疡性结肠炎 | 图像处理和机器学习算法 | 深度学习 | 图像 | 200张组织学图像 |
65 | 2025-03-15 |
An Updated Simplified Severity Scale for Age-Related Macular Degeneration Incorporating Reticular Pseudodrusen: Age-Related Eye Disease Study Report Number 42
2024-Oct, Ophthalmology
IF:13.1Q1
DOI:10.1016/j.ophtha.2024.04.011
PMID:38657840
|
研究论文 | 本文更新了年龄相关性眼病研究(AREDS)的简化严重程度量表,以评估晚期年龄相关性黄斑变性(AMD)的风险,并纳入网状假性玻璃膜疣(RPD),并在AREDS2中进行了外部验证 | 更新了AREDS简化严重程度量表,纳入RPD状态,并使用深度学习对彩色眼底照片进行分级,提高了预后准确性 | 研究结果可能仅适用于类似人群,且量表仍主要用于广泛的风险分类 | 更新并验证AREDS简化严重程度量表,以更准确地评估晚期AMD的风险 | AREDS和AREDS2临床试验中的参与者(AREDS:2719人,AREDS2:1472人) | 数字病理学 | 年龄相关性黄斑变性 | 深度学习 | NA | 图像(彩色眼底照片) | AREDS:2719人,AREDS2:1472人 |
66 | 2025-03-15 |
An Automated Multi-scale Feature Fusion Network for Spine Fracture Segmentation Using Computed Tomography Images
2024-Oct, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01091-0
PMID:38622384
|
研究论文 | 本文提出了一种新颖的多尺度特征融合深度学习模型,用于自动化脊柱骨折分割 | 提出了一种包含六个模块的多尺度特征融合深度学习模型,用于脊柱骨折的自动化分割 | 未提及具体局限性 | 解决脊柱骨折在医学图像中的准确分割问题 | 脊柱骨折 | 计算机视觉 | 脊柱骨折 | 深度学习 | 多尺度特征融合网络 | CT图像 | 未提及具体样本数量 |
67 | 2025-03-14 |
Radio-opaque contrast agents for liver cancer targeting with KIM during radiation therapy (ROCK-RT): an observational feasibility study
2024-Oct-08, Radiation oncology (London, England)
DOI:10.1186/s13014-024-02524-4
PMID:39380004
|
研究论文 | 本研究旨在探讨使用X射线图像实时引导放射治疗肝细胞癌的可行性 | 开发了一种用于实时运动跟踪的深度学习方法,以提高放射治疗的靶向准确性 | 研究样本量较小,且为回顾性分析,可能影响结果的普遍性 | 建立使用X射线图像实时引导放射治疗肝细胞癌的可行性 | 50名肝细胞癌患者 | 数字病理学 | 肝癌 | X射线和计算机断层扫描 | 深度学习 | 图像 | 50名肝细胞癌患者 |
68 | 2025-03-13 |
Deep learning model using planar whole-body bone scintigraphy for diagnosis of skull base invasion in patients with nasopharyngeal carcinoma
2024-Oct-09, Journal of cancer research and clinical oncology
IF:2.7Q3
DOI:10.1007/s00432-024-05969-y
PMID:39379746
|
研究论文 | 本研究评估了基于平面全身骨显像的深度学习模型在诊断鼻咽癌患者颅底侵犯中的可靠性 | 首次使用深度学习模型结合平面全身骨显像数据来诊断鼻咽癌患者的颅底侵犯,并展示了其优于核医学专家的诊断能力 | 研究结果主要基于特定数据集,需要进一步的外部验证以确保模型的广泛适用性 | 评估深度学习模型在诊断鼻咽癌患者颅底侵犯中的应用效果 | 新诊断的鼻咽癌患者 | 数字病理 | 鼻咽癌 | 平面全身骨显像 | CNN | 图像 | 多中心研究,具体样本数量未明确 |
69 | 2025-03-13 |
Deep learning-based approaches for multi-omics data integration and analysis
2024-Oct-02, BioData mining
IF:4.0Q1
DOI:10.1186/s13040-024-00391-z
PMID:39358793
|
综述 | 本文回顾了基于深度学习的多组学数据整合和分析方法,并讨论了这些方法的独特能力和新兴趋势 | 本文创新性地将深度学习方法分为非生成式和生成式两大类,并详细讨论了它们在多组学数据整合中的应用和优势 | 本文未涉及具体实验验证,仅进行了方法论的综述和讨论 | 探讨深度学习在多组学数据整合和分析中的应用 | 多组学数据(包括分子组学和影像组学数据) | 机器学习 | NA | 深度学习 | 前馈神经网络、图卷积神经网络、自编码器、变分方法、生成对抗模型、生成预训练模型 | 多组学数据(包括分子组学和影像组学数据) | NA |
70 | 2025-03-13 |
Removing Artifacts in Transcranial Photoacoustic Imaging With Polarized Self-Attention Dense-UNet
2024-10, Ultrasound in medicine & biology
|
研究论文 | 本文提出了一种名为PSAD-UNet的深度学习模型,用于去除经颅光声成像中的伪影,提高成像质量 | 提出了极化自注意力密集U-Net(PSAD-UNet),用于校正经颅光声成像中的失真,并准确恢复骨板下的成像对象 | NA | 提高经颅光声成像的成像质量,减少骨板对成像的影响 | 经颅光声成像中的伪影 | 计算机视觉 | NA | 光声成像(PAI) | PSAD-UNet(极化自注意力密集U-Net) | 图像 | NA |
71 | 2025-03-13 |
Transition-zone PSA-density calculated from MRI deep learning prostate zonal segmentation model for prediction of clinically significant prostate cancer
2024-10, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04301-z
PMID:38896250
|
研究论文 | 本文开发了一种基于T2加权图像的深度学习前列腺区域分割模型,并评估了TZ-PSAD在预测临床显著性前列腺癌(csPCa)中的表现,与传统PSAD进行比较 | 开发了一种深度学习模型用于前列腺区域分割,并首次评估了TZ-PSAD在预测csPCa中的表现,结果显示其略优于传统PSAD | 研究依赖于MRI图像和PSA值,且样本量有限,外部验证集仅来自PI-CAI挑战赛 | 开发并验证一种深度学习模型,用于前列腺区域分割,并评估TZ-PSAD在预测临床显著性前列腺癌中的表现 | 前列腺MRI图像和前列腺特异性抗原密度(PSAD) | 数字病理学 | 前列腺癌 | 深度学习 | 深度学习模型 | 图像 | 1020名患者用于模型开发,3461例MRI检查作为内部测试集,1460例MRI检查作为外部测试集 |
72 | 2025-03-13 |
Advanced MRI techniques in abdominal imaging
2024-10, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04369-7
PMID:38802629
|
综述 | 本文综述了腹部成像中先进的MRI技术,包括并行成像、三维采集、压缩感知和深度学习等技术 | 介绍了最新的MRI技术,如并行成像、三维采集、压缩感知和深度学习,以减少扫描时间并提高图像质量 | 未提及具体的技术局限性或临床应用中的挑战 | 探讨腹部成像中先进的MRI技术及其应用 | 腹部成像中的MRI技术 | 医学影像 | NA | 并行成像、三维采集、压缩感知、深度学习 | NA | 图像 | NA |
73 | 2025-03-13 |
Effectiveness of deep learning-based reconstruction for improvement of image quality and liver tumor detectability in the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging
2024-10, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04374-w
PMID:38755452
|
研究论文 | 本文评估了基于深度学习的重建(DLR)在提高Gd-EOB-MRI肝胆期(HBP)等体素高分辨率屏气脂肪抑制T1加权成像(HR-BH-FS-T1WI)图像质量和肿瘤检测能力方面的有效性 | 首次在Gd-EOB-MRI肝胆期成像中应用DLR技术,显著提高了图像质量和肿瘤检测能力 | 研究为回顾性分析,样本量较小(42例患者,98个肝肿瘤),且仅评估了特定成像技术 | 评估DLR在Gd-EOB-MRI肝胆期成像中的有效性,以提高图像质量和肿瘤检测能力 | 42例肝肿瘤患者,共98个肝肿瘤 | 医学影像 | 肝肿瘤 | Gd-EOB-MRI,DLR | 深度学习 | 医学影像 | 42例患者,98个肝肿瘤 |
74 | 2025-03-12 |
Cognitive Dysfunction in the Addictions (CDiA): A Neuron to Neighbourhood Collaborative Research Program on Executive Dysfunction and Functional Outcomes in Outpatients Seeking Treatment for Addiction
2024-Oct-28, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.08.30.24312806
PMID:39252904
|
研究论文 | 本文介绍了认知功能障碍在成瘾中的应用(CDiA)研究计划,旨在填补对成瘾中执行功能的理解空白,并促进对成瘾患者的治疗改进 | CDiA计划通过跨学科团队科学和转化研究,整合临床、临床前和健康服务研究,探索执行功能与成瘾严重程度和功能恢复的关联 | 研究样本仅限于18-60岁寻求成瘾治疗的成年人,且随访时间仅为一年,可能限制结果的普遍性 | 提高成瘾患者的健康结果,通过研究执行功能与成瘾的关联,为政策和干预措施提供依据 | 寻求成瘾治疗的成年人(18-60岁) | 神经科学 | 成瘾 | 重复经颅磁刺激、药物干预、全人建模 | 聚类分析、深度学习 | 多模态数据(包括脑回路、血液生物标志物、功能结果等) | 目标样本量为400名寻求成瘾治疗的成年人 |
75 | 2025-03-12 |
Carafe enables high quality in silico spectral library generation for data-independent acquisition proteomics
2024-Oct-18, bioRxiv : the preprint server for biology
DOI:10.1101/2024.10.15.618504
PMID:39463980
|
研究论文 | 本文介绍了Carafe,一种通过直接在DIA数据上训练深度学习模型来生成高质量实验特异性光谱库的工具 | Carafe直接在DIA数据上训练深度学习模型,而不是依赖DDA数据或基于DDA数据训练的模型,从而提高了碎片离子强度预测和肽段检测的性能 | NA | 开发一种工具,用于生成高质量的光谱库,以支持数据独立采集(DIA)质谱分析 | DIA质谱数据 | 质谱分析 | NA | 深度学习 | 深度学习模型 | 质谱数据 | 多种DIA数据集 |
76 | 2025-03-09 |
Enhancing Whole Slide Image Classification with Discriminative and Contrastive Learning
2024-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-72083-3_10
PMID:40046787
|
研究论文 | 本研究通过结合判别式和对比学习技术,提升了全切片图像(WSI)分类的准确性和鲁棒性 | 与现有主要依赖基于WSI级别标签分配伪标签的对比学习方法不同,本研究直接在WSI级别构建正负样本,从而更有效地学习信息丰富的图像特征 | NA | 提高全切片图像分类的准确性和鲁棒性 | 全切片图像(WSI) | 数字病理学 | NA | 对比学习 | 深度学习 | 图像 | 两个数据集 |
77 | 2025-03-09 |
Accurate fully automated assessment of left ventricle, left atrium, and left atrial appendage function from computed tomography using deep learning
2024-Oct, European heart journal. Imaging methods and practice
DOI:10.1093/ehjimp/qyaf011
PMID:40051867
|
研究论文 | 本研究开发了一种全自动深度学习方法,用于从计算机断层扫描(CT)中计算心脏功能 | 首次比较了nnU-Net、3D TransUNet和UNETR在心脏功能参数分割和计算中的表现,发现nnU-Net在多个指标上优于其他模型 | 样本量较小(39名患者),且仅评估了左侧心脏功能 | 开发一种全自动深度学习方法,用于从CT中计算心脏功能参数 | 左心室(LV)、左心房(LA)和左心耳(LAA) | 计算机视觉 | 心血管疾病 | CT | nnU-Net, 3D TransUNet, UNETR | 图像 | 39名患者的时间分辨CT数据集 |
78 | 2025-03-08 |
Machine learning for automated classification of lung collagen in a urethane-induced lung injury mouse model
2024-Oct-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.527972
PMID:39421774
|
研究论文 | 本文提出了一种基于机器学习的自动化评分框架,用于评估小鼠肺损伤模型中的肺胶原含量 | 利用预训练的VGG16模型和统计特征结合的方法,以及采用无监督技术进行图像分析,提高了肺胶原含量评估的准确性和效率 | 研究依赖于小鼠模型,可能无法完全反映人类肺疾病的情况 | 开发自动化评分系统以提高肺胶原含量评估的准确性和一致性 | 成年雌性小鼠的肺切片图像 | 数字病理学 | 肺癌 | SHG显微镜 | VGG16, SVM | 图像 | NA |
79 | 2025-03-05 |
Deep learning models for hepatitis E incidence prediction leveraging Baidu index
2024-10-31, BMC public health
IF:3.5Q1
DOI:10.1186/s12889-024-20532-7
PMID:39478514
|
研究论文 | 本文利用百度指数和深度学习模型预测山东省的戊型肝炎发病率 | 引入了KAN到LSTM模型中以提高非线性学习能力,并验证了百度指数在预测戊型肝炎发病率中的价值 | 百度指数与戊型肝炎发病率之间的相关性较弱 | 预测戊型肝炎发病率,以帮助公共卫生组织预防疾病传播 | 山东省的戊型肝炎发病率和百度指数数据 | 自然语言处理 | 戊型肝炎 | LSTM, stacked LSTM, attention-based LSTM, attention-based stacked LSTM, KAN | LSTM | 时间序列数据 | 2009年1月至2022年12月的山东省戊型肝炎发病率和百度指数数据 |
80 | 2025-03-05 |
Spike-and-Slab Shrinkage Priors for Structurally Sparse Bayesian Neural Networks
2024-Oct-31, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3485529
PMID:39480710
|
研究论文 | 本文探讨了在贝叶斯神经网络(BNNs)中使用Lasso和Horseshoe两种收缩技术进行模型压缩的方法,提出了结构稀疏的BNNs,并开发了计算上可行的变分推断方法 | 提出了结构稀疏的贝叶斯神经网络,使用spike-and-slab group Lasso(SS-GL)和SS group Horseshoe(SS-GHS)先验来系统地剪枝过多的节点,并开发了计算上可行的变分推断方法 | NA | 探索在贝叶斯神经网络中使用收缩技术进行模型压缩,以提高计算效率和降低能耗 | 贝叶斯神经网络(BNNs) | 机器学习 | NA | Lasso, Horseshoe | 贝叶斯神经网络(BNNs) | NA | NA |