本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
841 | 2024-08-13 |
Correction: Artificial intelligence for surgical safety during laparoscopic gastrectomy for gastric cancer: Indication of anatomical landmarks related to postoperative pancreatic fistula using deep learning
2024-Oct, Surgical endoscopy
DOI:10.1007/s00464-024-11160-8
PMID:39133331
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
842 | 2024-10-16 |
Automatic localization of anatomical landmarks in head cine fluoroscopy images via deep learning
2024-Oct, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17349
PMID:39140650
|
研究论文 | 本文提出了一种基于深度学习的自动定位头部X射线影像中解剖标志点的方法 | 本文首次提出了一种基于深度学习的方法,用于在随机准直和放大的2D头部X射线影像中自动定位3D解剖标志点 | 本文仅在合成图像和临床X射线影像上进行了验证,尚未在实际临床环境中广泛应用 | 开发一种方法,用于在X射线引导介入手术中自动定位解剖标志点,以实现个性化的辐射剂量测量 | 头部X射线影像中的解剖标志点 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | 800,000张伪2D合成图像和135个回顾性收集的头部CT体积数据 |
843 | 2024-10-16 |
Identifying nucleotide-binding leucine-rich repeat receptor and pathogen effector pairing using transfer-learning and bilinear attention network
2024-Oct-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae581
PMID:39331576
|
研究论文 | 提出了一种基于迁移学习和双线性注意力网络的深度学习算法ProNEP,用于高效识别核苷酸结合亮氨酸重复受体与病原体效应物的配对 | 将核苷酸结合亮氨酸重复受体与效应物的配对预测任务概念化为蛋白质-蛋白质相互作用预测任务,并结合迁移学习和双线性注意力网络进行预测 | NA | 开发一种高效的算法来识别核苷酸结合亮氨酸重复受体与病原体效应物的配对,以促进作物育种和生物学研究 | 核苷酸结合亮氨酸重复受体与病原体效应物的配对 | 机器学习 | NA | 迁移学习,双线性注意力网络 | 双线性注意力网络 | 蛋白质序列数据 | 91,291个核苷酸结合亮氨酸重复受体和387个效应物 |
844 | 2024-10-16 |
Spherical harmonics-based deep learning achieves generalized and accurate diffusion tensor imaging
2024-Oct-01, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3471769
PMID:39352828
|
研究论文 | 本文提出了一种基于球谐函数的深度学习方法,用于改进扩散张量成像的质量和泛化能力 | 利用球谐函数表示体素级别的扩散磁共振信号,并将其系数图作为输入,提出了一种新的深度学习网络,用于预测扩散张量场,从而提高了方法的泛化能力 | NA | 开发一种通用、准确且高效的基于深度学习的扩散张量成像方法 | 扩散张量成像的质量和泛化能力 | 计算机视觉 | NA | 扩散张量成像 (DTI) | 深度学习网络 | 图像 | 包括模拟和体内数据集,涵盖多种扩散张量成像应用场景 |
845 | 2024-10-16 |
AI diagnostics in bone oncology for predicting bone metastasis in lung cancer patients using DenseNet-264 deep learning model and radiomics
2024-Oct, Journal of bone oncology
IF:3.1Q2
DOI:10.1016/j.jbo.2024.100640
PMID:39399584
|
研究论文 | 本研究旨在利用影像组学和深度学习预测肺癌患者的骨转移 | 通过整合先进的影像技术和人工智能,提高预测准确性和临床决策 | NA | 预测肺癌患者的骨转移 | 肺癌患者的骨转移 | 计算机视觉 | 肺癌 | 影像组学 | DenseNet-264 | 影像 | NA |
846 | 2024-10-16 |
Code-Free Machine Learning Solutions for Microscopy Image Processing: Deep Learning
2024-Oct, Tissue engineering. Part A
DOI:10.1089/ten.TEA.2024.0014
PMID:38556835
|
综述 | 本文综述了适用于显微图像处理的无需编程的深度学习方法 | 重点介绍了适用于缺乏编程经验的生物学家的深度学习算法,并提供了无需编码的开放平台访问方式 | 未对算法进行比较,而是描述了它们擅长解决的问题 | 探讨适用于显微图像处理的深度学习方法,特别是那些无需编程经验的方法 | 显微图像处理算法及其在生物学领域的应用 | 计算机视觉 | NA | 深度学习 | 人工神经网络 | 图像 | NA |
847 | 2024-10-16 |
Deep Learning to Predict Functional Outcome in Acute Ischemic Stroke
2024-Oct, Radiology
IF:12.1Q1
DOI:10.1148/radiol.242705
PMID:39404635
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
848 | 2024-10-15 |
NRIMD, a Web Server for Analyzing Protein Allosteric Interactions Based on Molecular Dynamics Simulation
2024-Oct-14, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00783
PMID:38991149
|
研究论文 | NRIMD是一个基于分子动力学模拟分析蛋白质变构相互作用的网络服务器 | NRIMD是首个提供分子动力学模拟中长程相互作用综合分析的在线服务,显著降低了使用深度学习预测蛋白质长程相互作用的门槛 | NA | 开发一个用于分析蛋白质中长程变构相互作用的网络服务器 | 蛋白质中的长程变构相互作用 | 生物信息学 | NA | 分子动力学模拟 | 图神经网络 | 蛋白质结构数据 | NA |
849 | 2024-10-15 |
FCSSL: fusion enhanced contrastive self-supervised learning method for parallel MRI reconstruction
2024-Oct-14, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad6d28
PMID:39116910
|
研究论文 | 提出了一种融合增强的对比自监督学习方法FCSSL,用于并行MRI重建,无需全采样数据集和线圈敏感性图 | 引入了一种基于两对重下采样掩码的对比学习框架,设计了一种自监督学习方式的适应性融合网络,显著提高了重建质量 | 未提及具体限制 | 解决在无法或成本高昂获取全采样数据集的情况下,使用深度学习进行MRI重建的问题 | 并行MRI重建 | 计算机视觉 | NA | 对比自监督学习 | 适应性融合网络 | 图像 | 使用膝关节数据集进行实验,具体样本数量未提及 |
850 | 2024-10-15 |
MHIPM: Accurate Prediction of Microbe-Host Interactions Using Multiview Features from a Heterogeneous Microbial Network
2024-Oct-14, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c01296
PMID:39289839
|
研究论文 | 本文提出了一种基于深度学习的方法MHIPM,用于预测微生物与宿主之间的相互作用 | MHIPM利用多源生物信息和异构微生物网络,结合ESM-2和doc2vec模型以及自注意力机制,提取多视角特征,并通过GraphSAGE模型捕捉网络中的特征,实现了对微生物-宿主相互作用的高精度预测 | NA | 通过计算方法优先筛选微生物-宿主相互作用,以便进一步进行生物实验验证 | 微生物与宿主之间的相互作用 | 机器学习 | NA | 深度学习 | GraphSAGE | 蛋白质序列 | 涉及人类蛋白质、病毒、噬菌体和致病菌的异构微生物网络 |
851 | 2024-10-15 |
The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform
2024-Oct-14, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00595
PMID:39320984
|
研究论文 | 本文介绍了一种基于深度学习的在线小分子激酶选择性分析预测平台KinomePro-DL的开发与应用 | 开发了一种多任务深度神经网络模型,用于预测化合物的新结构激酶选择性,并提供了一个免费的在线预测平台KinomePro-DL | 未提及 | 开发和应用一种深度学习模型,用于预测小分子激酶抑制剂的激酶选择性 | 小分子激酶抑制剂的激酶选择性 | 机器学习 | NA | 深度学习 | 多任务深度神经网络 | 化合物数据 | 191种代表性激酶的抑制剂数据集 |
852 | 2024-10-15 |
KnoMol: A Knowledge-Enhanced Graph Transformer for Molecular Property Prediction
2024-Oct-14, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c01092
PMID:39323109
|
研究论文 | 本文介绍了一种名为KnoMol的知识增强图Transformer框架,用于提高分子结构的理解和分子属性预测的准确性 | KnoMol通过将专家化学知识集成到Transformer中,模拟药物化学家的分析方法,并采用多视角注意力机制来更精确地表示环系统,从而提高了模型的表示能力 | NA | 提高分子属性预测的准确性和泛化能力,减少对大量数据的依赖 | 分子结构和分子属性 | 机器学习 | NA | Transformer | 图Transformer | 分子数据 | 涉及MoleculeNet和一些小规模数据集的评估实验 |
853 | 2024-10-15 |
Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery
2024-Oct-14, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c01024
PMID:39360948
|
综述 | 本文回顾了自2018年以来自由能扰动(FEP)计算在药物发现项目中的实际应用 | 讨论了物理模拟方法的替代方案以及深度学习在自由能计算中的整合 | 仍面临力场准确性和采样效率的挑战 | 探讨自由能计算在药物发现中的最新进展和实际应用 | 自由能扰动计算在药物发现中的应用 | 药物发现 | NA | 自由能扰动计算 | NA | NA | NA |
854 | 2024-10-15 |
A hybrid capsule attention-based convolutional bi-GRU method for multi-class mental task classification based brain-computer Interface
2024-Oct-14, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2024.2410221
PMID:39397592
|
研究论文 | 本文提出了一种基于胶囊注意力机制的卷积双向门控循环单元模型,用于多类心理任务分类的脑机接口 | 本文引入了一种混合深度学习技术,结合了胶囊网络和注意力机制,以提高多类心理任务分类的准确性 | NA | 研究脑机接口中多级心理活动的分类问题,以提高分类准确性 | 脑电图数据和心理任务分类 | 机器学习 | NA | 脑电图分析 | 卷积神经网络 (CNN) 和双向门控循环单元 (bi-GRU) | 脑电图数据 | 使用提供的脑电图数据集进行评估 |
855 | 2024-10-15 |
This Microtubule Does Not Exist: Super-Resolution Microscopy Image Generation by a Diffusion Model
2024-Oct-14, Small methods
IF:10.7Q1
DOI:10.1002/smtd.202400672
PMID:39400948
|
研究论文 | 本文探讨了将扩散模型应用于超分辨率显微镜图像生成的适应和训练过程 | 展示了生成的图像与实验图像相似,且生成过程不会过度记忆训练集中的现有图像 | 未提及具体的局限性 | 展示生成扩散模型在显微镜任务中的潜力,并为未来在该领域的应用铺平道路 | 超分辨率显微镜图像的生成 | 计算机视觉 | NA | 扩散模型 | 扩散模型 | 图像 | 使用了少量实验图像进行训练和比较 |
856 | 2024-10-15 |
Internet of Things and Cloud Computing-based Disease Diagnosis using Optimized Improved Generative Adversarial Network in Smart Healthcare System
2024-Oct-13, Network (Bristol, England)
DOI:10.1080/0954898X.2024.2392770
PMID:39396229
|
研究论文 | 本文提出了一种基于物联网和云计算的智能医疗系统中使用优化改进生成对抗网络进行疾病诊断的方法 | 本文引入了优化改进生成对抗网络(IGAN),并通过Flamingo Search优化算法(FSOA)对其进行优化,提高了疾病诊断的准确性和特异性,同时减少了执行时间 | NA | 提高智能医疗系统中疾病诊断的准确性和效率 | 糖尿病、慢性肾病和心脏病患者的数据 | 机器学习 | 心血管疾病 | 生成对抗网络(GAN) | 生成对抗网络(GAN) | 电子健康记录 | NA |
857 | 2024-10-15 |
Deep-learning-based attenuation map generation in kidney single photon emission computed tomography
2024-Oct-12, EJNMMI physics
IF:3.0Q2
DOI:10.1186/s40658-024-00686-4
PMID:39394395
|
研究论文 | 本研究利用深度学习技术从SPECT数据中生成合成衰减图(μ-maps),以实现肾脏SPECT成像的无CT量化技术 | 本研究开发了一种基于深度学习的算法,用于从SPECT数据生成合成μ-maps,无需CT扫描,从而减少辐射暴露 | NA | 建立一种无需CT扫描的肾脏SPECT成像量化技术,以减少辐射暴露 | 肾脏SPECT成像中的衰减校正 | 计算机视觉 | NA | 深度学习 | 3D U-Net | 图像 | 1000例Tc-99m DTPA SPECT/CT扫描数据,其中800例用于训练,100例用于验证,100例用于测试 |
858 | 2024-10-15 |
A lightweight defect detection algorithm for escalator steps
2024-Oct-11, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-74320-9
PMID:39394361
|
研究论文 | 提出了一种高效的电梯台阶缺陷检测算法ASF-Sim-YOLO,解决了检测网络模型参数过多、适应性差和视频流实时处理困难的问题 | 设计了ASF-Sim-P2结构以提高小目标检测精度,结合SimAM与SPPF增强模型捕捉关键信息的能力,采用NWD替代传统的CIoU损失函数,并对模型进行通道剪枝以满足移动设备部署需求 | NA | 开发一种轻量级且高效的电梯台阶缺陷检测算法 | 电梯台阶缺陷 | 计算机视觉 | NA | 目标检测 | YOLO | 视频 | 测试数据集上的平均精度(mAP50)为96.8%,比基线模型提高了22.1%,模型计算复杂度(GFLOPS)降低到基线模型的四分之一,帧率(FPS)提高到575.1 |
859 | 2024-10-15 |
A comparative study on automatic treatment planning for online adaptive proton therapy of esophageal cancer: which combination of deformable registration and deep learning planning tools performs the best?
2024-Oct-10, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad80f6
PMID:39332445
|
研究论文 | 本文比较了四种在线自适应质子治疗(OAPT)策略在食管癌治疗计划中的表现,评估了变形图像配准(DIR)和深度学习(DL)工具的组合效果 | 本文首次系统地比较了四种OAPT策略,并展示了DL-DEF和DL-DL在10分钟内实现OAPT的潜力 | 在某些情况下,目标体积的分割错误导致剂量下降,需要进一步改进分割算法 | 评估和比较不同变形图像配准和深度学习工具组合在食管癌在线自适应质子治疗中的效果 | 食管癌患者的在线自适应质子治疗计划 | 计算机视觉 | 食管癌 | 变形图像配准(DIR),深度学习(DL) | nnU-Net | 图像 | 17名食管癌患者 |
860 | 2024-10-15 |
Comparison of deep-learning multimodality data fusion strategies in mandibular osteoradionecrosis NTCP modelling using clinical variables and radiation dose distribution volumes
2024-Oct-10, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ad8290
PMID:39357529
|
研究论文 | 本文比较了不同深度学习多模态数据融合策略在颌骨放射性骨坏死NTCP模型中的应用 | 首次比较了早期、联合和晚期多模态数据融合策略在深度学习NTCP模型中的应用 | 晚期融合策略虽然技术复杂度较低,但缺乏关键的模态间交互作用 | 探讨不同多模态数据融合策略在深度学习NTCP模型中的有效性 | 颌骨放射性骨坏死的NTCP模型 | 机器学习 | NA | 深度学习 | 3D DenseNet-40 | 图像数据和临床数据 | 92例放射性骨坏死病例和92例对照组 |