本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 121 | 2025-10-07 |
Identifying nucleotide-binding leucine-rich repeat receptor and pathogen effector pairing using transfer-learning and bilinear attention network
2024-Oct-01, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae581
PMID:39331576
|
研究论文 | 提出一种名为ProNEP的深度学习算法,用于高通量识别NLR受体与病原体效应子的配对关系 | 将CNE预测任务概念化为蛋白质-蛋白质相互作用预测任务,并首次结合迁移学习与双线性注意力网络进行预测 | CNE数据非常稀缺,仅387个已知配对,限制了模型的训练和应用 | 开发高效识别NLR受体与效应子配对关系的方法,促进作物育种和免疫学研究 | 核苷酸结合富亮氨酸重复序列受体和病原体效应子 | 生物信息学 | 植物免疫疾病 | 深度学习,迁移学习 | 双线性注意力网络 | 蛋白质序列数据 | 91,291个NLRs和387个已知CNE配对 | PyTorch | 双线性注意力网络 | 准确率,精确率,召回率,F1分数,AUC | NA |
| 122 | 2025-04-06 |
An Automated Deep Learning-Based Framework for Uptake Segmentation and Classification on PSMA PET/CT Imaging of Patients with Prostate Cancer
2024-Oct, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01104-y
PMID:38587770
|
研究论文 | 开发并评估了一种基于深度学习的自动化框架,用于在前列腺癌患者的PSMA PET/CT成像上进行摄取分割和分类 | 采用解剖学先验引导策略,使深度学习框架专注于PSMA高摄取病变,并构建了多模态决策融合分类框架 | 样本量相对有限(193例扫描),且仅来自两个机构 | 自动化全身肿瘤负荷评估 | 前列腺癌患者的PSMA PET/CT扫描图像 | 数字病理学 | 前列腺癌 | PSMA PET/CT成像 | CNN, 多模态决策融合框架 | 医学影像 | 193例[F]DCFPyL PET/CT扫描(137例用于训练和内部测试,56例用于外部测试) | NA | NA | NA | NA |
| 123 | 2025-04-05 |
Deep learning of echocardiography distinguishes between presence and absence of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy
2024-Oct-14, Echo research and practice
IF:3.2Q2
DOI:10.1186/s44156-024-00059-8
PMID:39396969
|
研究论文 | 本研究利用深度学习技术分析超声心动图,以区分肥厚型心肌病患者心脏磁共振中晚期钆增强的存在与否 | 结合临床参数和深度学习分析的超声心动图图像,开发了一种优于仅基于临床参数的模型的新方法 | 样本量相对较小(323例),且研究为横断面设计,未进行长期预后评估 | 区分肥厚型心肌病患者心脏磁共振中晚期钆增强的阳性与阴性 | 肥厚型心肌病患者 | 数字病理学 | 心血管疾病 | 心脏磁共振(CMR)和超声心动图 | 深度卷积神经网络(DCNN) | 图像 | 323例肥厚型心肌病患者(训练集273例,测试集50例) | NA | NA | NA | NA |
| 124 | 2025-04-03 |
Substrate recognition principles for the PP2A-B55 protein phosphatase
2024-Oct-04, Science advances
IF:11.7Q1
DOI:10.1126/sciadv.adp5491
PMID:39356758
|
研究论文 | 本文通过整合AlphaFold建模和高分辨率突变扫描,揭示了PP2A-B55磷酸酶识别底物的机制,并设计了一种特异性肽抑制剂 | 发现了PP2A-B55通过保守机制识别底物α螺旋的关键氨基酸决定因素,并设计了特异性肽抑制剂 | 研究中使用的肽抑制剂可能需要在更多生物系统中验证其效果 | 阐明PP2A-B55磷酸酶识别底物的分子机制及其在细胞信号传导中的作用 | PP2A-B55磷酸酶及其底物α螺旋结构 | 分子生物学 | NA | AlphaFold建模、高分辨率突变扫描、深度学习蛋白设计 | 深度学习 | 蛋白质结构数据 | NA | NA | NA | NA | NA |
| 125 | 2025-10-07 |
Periapical lesion detection in periapical radiographs using the latest convolutional neural network ConvNeXt and its integrated models
2024-10-25, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-75748-9
PMID:39455655
|
研究论文 | 提出一种结合Yolov5和ConvNeXt的深度学习集成模型YoCNET,用于根尖片中牙齿自动分割和多颗牙齿根尖病变的同步检测 | 首次将目标检测模型Yolov5与图像分类模型ConvNeXt集成,克服单一分类模型无法同时识别多个病变目标的限制 | 数据集排除了乳牙,且仅使用1305张根尖片进行训练验证 | 开发能够自动分割牙齿并同时检测多颗牙齿根尖病变的深度学习模型 | 根尖片中的牙齿和根尖病变 | 计算机视觉 | 牙科疾病 | 放射影像分析 | CNN, 集成模型 | 图像 | 1305张根尖片用于训练验证,717张单个牙齿图像用于集成模型验证 | PyTorch | Yolov5, ConvNeXt, ResNet34 | 准确率, 精确率, 灵敏度, F1分数, AUC, 混淆矩阵 | NA |
| 126 | 2024-10-02 |
Deep learning sharpens vistas on biodiversity mapping
2024-Oct-08, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2416358121
PMID:39348547
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 127 | 2025-04-01 |
A Deep Learning-based Pipeline for Segmenting the Cerebral Cortex Laminar Structure in Histology Images
2024-Oct, Neuroinformatics
IF:2.7Q3
DOI:10.1007/s12021-024-09688-0
PMID:39417954
|
研究论文 | 本文提出了一种基于深度学习的流程,用于在组织学图像中分割大脑皮层的层状结构 | 开发了一种新颖的计算框架,结合AI工具获取皮层标签,并使用深度学习模型进行皮层分层分割,相比现有方法在分割质量上有显著提升 | 仅针对普通狨猴的Nissl染色和髓鞘染色切片图像进行研究,未在其他物种或染色方法上验证 | 理解大脑皮层层状结构的解剖学特征及其连接模式,为神经系统疾病研究提供见解 | 普通狨猴大脑的Nissl染色和髓鞘染色切片图像 | 数字病理学 | 神经系统疾病 | 深度学习 | 深度学习模型(未明确具体类型) | 图像 | 普通狨猴大脑切片图像(具体数量未说明) | NA | NA | NA | NA |
| 128 | 2025-03-28 |
Message-Passing Monte Carlo: Generating low-discrepancy point sets via graph neural networks
2024-Oct, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2409913121
PMID:39325425
|
研究论文 | 本文提出了一种名为消息传递蒙特卡洛(MPMC)的新型低差异点集生成方法,利用图神经网络工具实现 | 首次将几何深度学习方法应用于低差异点集生成,提出MPMC点集并在低维和小点数情况下达到最优或接近最优差异 | 目前主要适用于低维和小规模点集的情况 | 开发更有效的低差异点集生成方法以提高数值积分、计算机视觉等领域的性能 | 低差异点集的生成方法 | 机器学习 | NA | 几何深度学习 | 图神经网络(GNN) | 空间点集数据 | 低维和小规模点集 | NA | NA | NA | NA |
| 129 | 2025-10-07 |
Prostate Cancer Risk Stratification in NRG Oncology Phase III Randomized Trials Using Multimodal Deep Learning With Digital Histopathology
2024-Oct, JCO precision oncology
IF:5.3Q1
DOI:10.1200/PO.24.00145
PMID:39447096
|
研究论文 | 本研究开发了一种基于多模态深度学习的前列腺癌风险分层系统,通过数字组织病理学图像和临床数据改善局部前列腺癌的风险评估 | 首次在NRG Oncology III期随机试验中应用多模态人工智能模型进行前列腺癌风险分层,相比现有NCCN风险分组显示出更好的预后分层能力 | 研究基于特定临床试验队列,需要在更广泛的人群中进行外部验证 | 开发优于当前NCCN风险分组的临床可用前列腺癌风险分层系统 | 9,787名来自8项NRG Oncology III期随机试验的局部前列腺癌患者 | 数字病理学 | 前列腺癌 | 数字组织病理学成像 | 多模态深度学习 | 数字组织病理学图像, 临床数据 | 9,787名患者 | NA | 多模态人工智能模型 | 10年远处转移率, 风险重分类率 | NA |
| 130 | 2025-10-07 |
ConvNext Mitosis Identification-You Only Look Once (CNMI-YOLO): Domain Adaptive and Robust Mitosis Identification in Digital Pathology
2024-10, Laboratory investigation; a journal of technical methods and pathology
DOI:10.1016/j.labinv.2024.102130
PMID:39233013
|
研究论文 | 提出一种名为CNMI-YOLO的两阶段深度学习方法,用于数字病理学中的有丝分裂细胞识别 | 结合YOLOv7架构进行细胞检测和ConvNeXt架构进行细胞分类,解决领域自适应问题 | 未明确说明模型在更广泛癌症类型中的性能表现 | 提高不同类型癌症中有丝分裂细胞的识别准确性 | 组织病理学图像中的有丝分裂细胞 | 数字病理学 | 癌症 | 深度学习 | CNN, Transformer | 图像 | 使用有丝分裂领域泛化挑战2022数据集,包含黑色素瘤和肉瘤外部测试集 | NA | YOLOv7, ConvNeXt, Faster-RCNN, Swin Transformer | 精确率, 召回率, F1分数 | NA |
| 131 | 2025-10-07 |
Body composition analysis by radiological imaging - methods, applications, and prospects
2024-10, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin
DOI:10.1055/a-2263-1501
PMID:38569516
|
综述 | 本文综述了使用放射学成像方法进行人体组织成分定量分析的技术、应用及发展前景 | 系统整合了放射学体成分分析的不同方法和定义,特别关注人工智能方法在自动化组织分割中的应用 | AI训练所需的分析工具和合适数据集的可用性被认为是主要限制因素 | 向放射学读者介绍体成分分析方法以促进其应用和传播 | 人体组织成分,特别是腹部脂肪腔室和肌肉群 | 医学影像分析 | 肿瘤和代谢疾病 | CT、MRI、放射学成像 | 深度学习 | 放射学横断面图像数据 | NA | NA | NA | NA | NA |
| 132 | 2025-10-07 |
Deep Learning Accelerated Brain Diffusion-Weighted MRI with Super Resolution Processing
2024-10, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.02.049
PMID:38521612
|
研究论文 | 本研究探讨了深度学习加速脑部扩散加权成像结合超分辨率处理的临床可行性和图像质量 | 首次将深度学习图像重建与超分辨率处理相结合用于加速脑部DWI,显著提高了图像质量和诊断信心 | 样本量相对较小(85例患者),仅在一台3T扫描仪上进行研究 | 评估深度学习加速脑部扩散加权成像的临床可行性和图像质量 | 85例连续接受临床MRI检查的患者 | 医学影像分析 | 脑部疾病 | 扩散加权成像,深度学习图像重建,超分辨率处理 | 深度学习模型 | 脑部MRI图像 | 85例患者,其中35例检测出颅内病变 | NA | NA | 图像质量评分,诊断信心评分,Fleiss' kappa,信号强度值 | 3T MRI扫描仪 |
| 133 | 2025-10-07 |
Diagnostic Performance of Radiomics and Deep Learning to Identify Benign and Malignant Soft Tissue Tumors: A Systematic Review and Meta-analysis
2024-10, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.03.033
PMID:38614826
|
系统评价与荟萃分析 | 系统评估影像组学和深度学习在良恶性软组织肿瘤鉴别诊断中的应用价值 | 首次对影像组学和深度学习在软组织肿瘤诊断中的性能进行系统评价和荟萃分析 | 纳入研究存在异质性,部分研究缺乏独立验证集 | 评估影像组学和深度学习在软组织肿瘤良恶性鉴别诊断中的性能 | 软组织肿瘤患者 | 医学影像分析 | 软组织肿瘤 | 影像组学分析,深度学习 | 深度学习模型 | 医学影像数据 | 21项研究共3866例患者,其中13项研究包含独立测试/验证集 | NA | NA | 敏感性,特异性 | NA |
| 134 | 2025-10-07 |
Ultrasound-Based Deep Learning Radiomics Nomogram for the Assessment of Lymphovascular Invasion in Invasive Breast Cancer: A Multicenter Study
2024-10, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.04.010
PMID:38658211
|
研究论文 | 基于B超和彩色多普勒超声图像开发深度学习放射组学列线图用于术前评估浸润性乳腺癌淋巴血管侵犯状态 | 首次结合B超和彩色多普勒超声图像开发深度学习放射组学列线图,通过多中心研究验证其对淋巴血管侵犯的预测价值 | 回顾性研究设计,样本仅来自八个医院 | 术前评估浸润性乳腺癌的淋巴血管侵犯状态 | 832例经病理证实的浸润性乳腺癌患者 | 数字病理 | 乳腺癌 | B超,彩色多普勒血流成像 | 深度学习 | 超声图像 | 832例患者来自八个医院,分为训练集、内部测试集和外部测试集 | NA | NA | AUC, 准确率, 校准曲线, 决策曲线分析, 临床影响曲线, 净重分类改进, 综合判别改进 | NA |
| 135 | 2025-10-07 |
Feasibility of Artificial Intelligence Constrained Compressed SENSE Accelerated 3D Isotropic T1 VISTA Sequence For Vessel Wall MR Imaging: Exploring the Potential of Higher Acceleration Factors Compared to Traditional Compressed SENSE
2024-10, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.03.041
PMID:38664146
|
研究论文 | 本研究探讨基于深度学习的压缩感知加速3D T1 VISTA序列在血管壁磁共振成像中的可行性,并与传统压缩感知方法进行比较 | 首次将人工智能约束压缩感知技术应用于血管壁MRI,探索比传统压缩感知更高的加速因子 | 样本量较小(40例患者),需要更大规模研究验证 | 优化血管壁磁共振成像的加速因子,获得高质量临床图像 | 40例颅内或颈动脉粥样硬化斑块患者 | 医学影像分析 | 心血管疾病 | 3D T1加权容积各向同性涡轮自旋回波采集,磁共振成像 | 深度学习 | 磁共振图像 | 40例患者 | NA | NA | 信噪比,对比噪声比,图像质量评分 | 3.0T MR系统 |
| 136 | 2025-10-07 |
Deep Learning Radiomics Model of Contrast-Enhanced CT for Differentiating the Primary Source of Liver Metastases
2024-10, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.04.012
PMID:38702214
|
研究论文 | 开发并验证基于增强CT的深度学习放射组学模型,用于识别肝转移瘤的原发灶来源 | 采用深度学习放射组学方法结合分步分类策略,首次实现对五种不同原发灶肝转移瘤的鉴别诊断 | 样本量相对有限,仅包含五个特定癌种的肝转移病变 | 开发能够识别肝转移瘤原发灶来源的智能诊断模型 | 657个肝转移病灶(来自428例患者),包括乳腺癌、肺癌、结直肠癌、胃癌和胰腺癌 | 医学影像分析 | 肝转移癌 | 增强CT成像 | 深度学习放射组学模型 | 医学影像(CT图像) | 训练验证集545个病灶(7:3分割),外部测试集112个病灶 | NA | NA | 准确率,AUC | NA |
| 137 | 2025-10-07 |
A deep profile of gene expression across 18 human cancers
2024-Oct-26, bioRxiv : the preprint server for biology
DOI:10.1101/2024.03.17.585426
PMID:38559197
|
研究论文 | 提出DeepProfile框架,利用无监督深度学习分析18种人类癌症的基因表达数据 | 开发了具有生物可解释性的无监督深度学习框架,能够从大规模基因表达数据中提取有价值的生物学信息 | 未明确说明模型在独立验证集上的性能表现及计算资源需求 | 利用无监督深度学习挖掘癌症基因表达数据中的生物学信息 | 18种人类癌症的50,211个转录组数据 | 机器学习 | 多癌种研究 | 基因表达分析,转录组测序 | 深度学习 | 基因表达数据 | 50,211个转录组样本,涵盖18种癌症类型 | NA | NA | 生物可解释性评估,Kaplan-Meier生存分析 | NA |
| 138 | 2025-10-07 |
Evolution of white matter hyperintensity segmentation methods and implementation over the past two decades; an incomplete shift towards deep learning
2024-Oct, Brain imaging and behavior
IF:2.4Q2
DOI:10.1007/s11682-024-00902-w
PMID:39083144
|
系统综述 | 系统回顾了过去二十年白质高信号分割方法的演变历程和实施情况 | 首次系统性地分析了过去二十年WMH分割工具的方法学演变,特别关注了深度学习技术的兴起趋势 | 仅包含公开可用技术且详细描述方法的文献,可能遗漏部分商业或未公开方法 | 分析白质高信号分割方法的发展趋势和实施差异 | 白质高信号分割工具和方法 | 医学影像分析 | 神经系统疾病 | 系统综述方法 | 深度学习,传统图像分割方法 | 医学影像数据 | 1007个视觉评分量表研究,118个流程开发文章,509个实施文章 | NA | NA | 评估标准 | NA |
| 139 | 2025-10-07 |
An artificial intelligence-driven scoring system to measure histological disease activity in ulcerative colitis
2024-10, United European gastroenterology journal
IF:5.8Q1
DOI:10.1002/ueg2.12562
PMID:38590110
|
研究论文 | 开发了一种基于人工智能的评分系统,用于测量溃疡性结肠炎的组织学疾病活动度 | 首次将人工智能系统应用于基于Nancy指数的溃疡性结肠炎组织学疾病活动度评估 | 样本量相对较小(200张图像),需要更大规模验证 | 开发能够自动评估溃疡性结肠炎组织学疾病活动度的人工智能系统 | 溃疡性结肠炎患者的组织学图像 | 数字病理学 | 溃疡性结肠炎 | 图像处理,深度学习,特征提取 | 深度学习 | 组织学图像 | 200张溃疡性结肠炎组织学图像 | NA | NA | 组内相关系数 | NA |
| 140 | 2025-03-14 |
Radio-opaque contrast agents for liver cancer targeting with KIM during radiation therapy (ROCK-RT): an observational feasibility study
2024-Oct-08, Radiation oncology (London, England)
DOI:10.1186/s13014-024-02524-4
PMID:39380004
|
研究论文 | 本研究旨在探讨使用X射线图像实时引导放射治疗肝细胞癌的可行性 | 开发了一种用于实时运动跟踪的深度学习方法,以提高放射治疗的靶向准确性 | 研究样本量较小,且为回顾性分析,可能影响结果的普遍性 | 建立使用X射线图像实时引导放射治疗肝细胞癌的可行性 | 50名肝细胞癌患者 | 数字病理学 | 肝癌 | X射线和计算机断层扫描 | 深度学习 | 图像 | 50名肝细胞癌患者 | NA | NA | NA | NA |