本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2026-01-07 |
A novel optimization-driven deep learning framework for the detection of DDoS attacks
2024-Nov-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-77554-9
PMID:39543174
|
研究论文 | 本文提出了一种基于优化驱动深度学习框架的DDoS攻击检测方法 | 结合条件生成对抗网络进行数据平衡,并采用堆叠稀疏去噪自编码器与萤火虫-黑寡妇混合优化算法进行攻击分类 | 仅使用单一数据集进行验证,未在更广泛网络环境中测试 | 开发高效的入侵检测系统以识别DDoS攻击 | 云计算或网络环境中的DDoS攻击流量 | 机器学习 | NA | 深度学习 | CGAN, SSDAE | 网络流量数据 | CICDDoS2019数据集 | NA | 条件生成对抗网络, 堆叠稀疏去噪自编码器 | 准确率 | NA |
| 2 | 2026-01-03 |
Emerging Brain-to-Content Technologies from Generative AI and Deep Representation Learning
2024-Nov, IEEE signal processing magazine
IF:9.4Q1
DOI:10.1109/msp.2024.3484629
PMID:40786597
|
综述 | 本文探讨了生成式AI和深度表示学习在脑机接口(BCI)领域催生的新兴脑到内容技术 | 提出了由生成式AI和深度学习驱动的BCI 2.0系统,将传统脑机接口升级为能够生成内容的范式转变技术 | NA | 回顾并展望生成式AI与深度学习在脑到内容技术中的应用与发展 | 脑机接口系统及其与生成式AI结合的技术 | 自然语言处理, 计算机视觉, 机器学习 | NA | 生成式AI, 深度表示学习 | NA | 信号, 图像, 语音, 文本 | NA | NA | NA | NA | NA |
| 3 | 2025-12-30 |
Deep generative design of RNA aptamers using structural predictions
2024-Nov, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-024-00720-6
PMID:39506080
|
研究论文 | 本文开发了一个基于结构预测的深度学习平台,用于从头生成设计RNA适配体 | 利用准确的RNA三维结构预测方法,实现结构引导的RNA序列生成设计,并通过实验验证了设计出的RNA适配体具有荧光活性 | NA | 开发一个结构到序列的深度学习平台,用于从头生成设计RNA适配体 | RNA适配体,特别是光激活适配体 | 机器学习 | NA | RNA三维结构预测 | 深度学习 | 结构数据,序列数据 | NA | NA | NA | NA | NA |
| 4 | 2025-12-29 |
Impact of retraining and data partitions on the generalizability of a deep learning model in the task of COVID-19 classification on chest radiographs
2024-Nov, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.6.064503
PMID:39734609
|
研究论文 | 本研究探讨了在标准胸部X光片上进行COVID-19分类任务时,不同模型再训练方案和数据划分对模型性能及泛化能力的影响 | 通过比较四种再训练策略(包括在Set B上重新训练、微调、L2正则化以及200次重新划分Set A训练集),深入分析了数据划分对深度学习模型泛化性能的影响,揭示了模型性能差异的原因 | 研究仅使用来自同一机构的数据集,可能限制了结果的广泛适用性;未涉及外部验证集,泛化能力评估可能不全面 | 评估不同再训练方案和数据划分对深度学习模型在COVID-19胸部X光分类任务中泛化性能的影响 | 标准胸部X光片(CXRs) | 计算机视觉 | COVID-19 | 深度学习 | 深度学习模型 | 图像 | Set A:9860名患者(2020年2月20日至2021年2月3日);Set B:5893名患者(2020年3月15日至2022年1月1日) | NA | NA | AUC(曲线下面积) | NA |
| 5 | 2025-12-22 |
Multimodality model investigating the impact of brain atlases, connectivity measures, and dimensionality reduction techniques on Attention Deficit Hyperactivity Disorder diagnosis using resting state functional connectivity
2024-Nov, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.6.064502
PMID:39713730
|
研究论文 | 本文提出了一种多模态模型,用于研究不同脑图谱、连接性测量和降维技术对注意力缺陷多动障碍诊断的影响 | 首次全面评估多种脑图谱、连接性测量和降维技术对ADHD诊断的影响,并整合表型数据构建高效多模态分类模型 | 未明确说明模型在外部验证集上的泛化能力,且样本量可能有限 | 研究不同脑图谱、连接性测量和降维技术对ADHD诊断的影响,并构建高效的多模态分类模型 | 注意力缺陷多动障碍患者 | 机器学习 | 注意力缺陷多动障碍 | 静息态功能连接分析 | 传统机器学习分类器 | 功能连接数据,表型数据 | ADHD-200数据集 | NA | NA | 准确率,AUC,F1分数 | NA |
| 6 | 2025-12-17 |
Leveraging laryngograph data for robust voicing detection in speech
2024-11-01, The Journal of the Acoustical Society of America
IF:2.1Q1
DOI:10.1121/10.0034445
PMID:39565144
|
研究论文 | 本研究提出了一种利用喉部描记数据的有监督发声检测模型,旨在提高语音信号中发声区间检测的鲁棒性和泛化能力 | 采用喉部描记数据作为参考标准,并引入CrossNet架构进行模型适应,同时探索预训练策略以增强模型泛化能力 | 模型性能可能依赖于喉部描记数据的质量和可用性,且未明确说明对非标准语音或噪声环境的适应性 | 开发一种鲁棒且泛化能力强的发声检测方法,以改进语音信号处理中的基频追踪任务 | 语音信号中的发声区间 | 自然语言处理 | NA | 喉部描记术 | 深度学习模型 | 语音信号, 喉部描记数据 | NA | NA | CrossNet | NA | NA |
| 7 | 2025-12-15 |
Concurrent optogenetic motor mapping of multiple limbs in awake mice reveals cortical organization of coordinated movements
2024 Nov-Dec, Brain stimulation
IF:7.6Q1
DOI:10.1016/j.brs.2024.10.010
PMID:39476952
|
研究论文 | 本研究开发了一种多肢体光遗传运动映射(MOMM)方法,结合光遗传刺激、深度学习姿态估计和三维三角测量,在清醒小鼠中同时映射多个肢体的运动表征 | 首次实现了在清醒动物中同时跟踪多个肢体的三维运动,并揭示了皮层按运动程序进行地形组织的原则 | 研究仅在小鼠中进行,未涉及其他物种;方法依赖于光遗传刺激,可能不适用于所有运动映射场景 | 开发多肢体光遗传运动映射技术,并探究协调运动在皮层的地形组织 | 清醒小鼠的多个肢体运动 | 机器学习和神经科学 | NA | 光遗传刺激、深度学习姿态估计、三维三角测量 | 深度学习 | 视频、运动数据 | 多个小鼠 | DeepLabCut | NA | NA | NA |
| 8 | 2025-12-15 |
Tiny Lungs, Big Challenges: Pediatric and Premature Lung Segmentation using Deep Learning
2024-Nov, ... International Symposium on Medical Information Processing and Analysis. International SIPAIM Workshop
|
研究论文 | 本文提出了一种基于深度学习的两步法,用于儿科和早产儿X射线图像的肺部分割,以应对小尺寸肺部、解剖变异和放射伪影的挑战 | 采用两步策略,先进行肺部检测,再分割心后肺区域,并结合加权损失函数在儿科和早产儿数据集上微调预训练的UNETR模型 | 未明确提及模型在更广泛或多样化数据集上的泛化能力,以及临床验证的细节 | 开发一种自动化的肺部分割方法,以支持儿科和早产儿肺部疾病的临床诊断和严重程度分级 | 儿科和早产儿的胸部X射线图像 | 计算机视觉 | 肺部疾病 | X射线成像 | 深度学习 | 图像 | 儿科407张图像,早产儿193张图像,预训练使用约31,000张扫描 | 未明确指定,可能基于PyTorch或TensorFlow | UNETR | Dice系数, Hausdorff距离 | 未明确指定 |
| 9 | 2025-12-13 |
Radiomics for differentiation of somatic BAP1 mutation on CT scans of patients with pleural mesothelioma
2024-Nov, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.6.064501
PMID:39669009
|
研究论文 | 本研究探讨了基于CT扫描的放射组学特征在区分胸膜间皮瘤患者体细胞BAP1基因突变状态中的潜力 | 首次利用放射组学方法结合机器学习模型,自动从CT图像中提取纹理特征来识别胸膜间皮瘤相关的体细胞BAP1突变,为无创基因状态评估提供了新思路 | 研究样本量相对较小(149例),模型性能有限(AUC 0.69),且尚未应用于胚系突变检测,需要进一步验证和扩展 | 探索放射组学在CT扫描中识别胸膜间皮瘤患者体细胞BAP1基因突变的可行性,并为未来胚系突变研究奠定基础 | 149例已知体细胞BAP1突变状态的胸膜间皮瘤患者 | 数字病理学 | 胸膜间皮瘤 | CT扫描,放射组学特征提取 | 机器学习模型(包括决策树等) | 医学图像(CT扫描) | 149例患者 | Scikit-learn | 决策树 | ROC AUC | NA |
| 10 | 2025-12-13 |
Personalized phenotype encoding and prediction of pathological head development from cross-sectional images
2024-Nov, ... International Symposium on Medical Information Processing and Analysis. International SIPAIM Workshop
|
研究论文 | 本文提出了一种新颖的深度学习架构,用于仅使用横截面数据对规范和病理性头部发育进行个性化预测 | 首次创建了与年龄和性别无关的患者表型表示,并能够在无需纵向数据训练的情况下实现病理性发育的个性化预测 | NA | 预测解剖发育,以辅助儿科外科治疗的选择和规划 | 儿科患者的头部发育,包括规范发育和病理性发育 | 计算机视觉 | 颅骨病理 | 深度学习 | 深度学习架构 | 图像 | NA | NA | 表型编码器, 生长预测器 | 头部表面生长预测误差, 体积误差 | NA |
| 11 | 2025-12-08 |
Wireless Sensing-based Daily Activity Tracking System Deployment in Low-Income Senior Housing Environments
2024-Nov, Proceedings of the ... annual International Conference on Mobile Computing and Networking. International Conference on Mobile Computing and Networking
DOI:10.1145/3636534.3698115
PMID:41346851
|
研究论文 | 本文介绍了一种基于无线传感的日常活动追踪系统,专为低收入老年住房环境设计,用于监测老年人的日常活动与移动能力 | 提出了一种非侵入式、低成本的无线传感解决方案,利用深度学习对周围WiFi信号进行细粒度分析,避免了摄像头或可穿戴设备带来的隐私、负担等问题 | 系统部署时间仅为一周,样本规模有限,且准确率最高为76.90%,仍有提升空间 | 开发并评估一种适用于低收入老年人的非侵入式日常活动监测系统,以早期发现功能衰退 | 低收入老年住房环境中的老年人及其日常活动 | 机器学习 | 老年疾病 | 无线传感技术,基于WiFi信号分析 | 深度学习模型 | 无线信号数据 | 在真实老年住房环境中部署一周,具体参与者数量未明确说明 | NA | NA | 准确率 | NA |
| 12 | 2025-12-02 |
Advances in artificial intelligence-based technologies for increasing the quality of medical products
2024-Nov-30, Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences
IF:2.5Q3
DOI:10.1007/s40199-024-00548-5
PMID:39613923
|
综述 | 本文综述了人工智能技术在提高医疗产品质量方面的最新进展和应用 | 整合了AI在药物靶点预测、产品开发加速及医疗质量提升中的综合应用视角 | 作为综述文章,未涉及具体实验数据或模型性能的深入分析 | 探讨AI技术如何优化医疗产品的开发流程、质量与成本效益 | 医疗产品(如药物)的开发与制造过程 | 机器学习 | NA | 机器学习、深度学习 | NA | 生物医学数据(如蛋白质结构、健康统计数据) | NA | NA | NA | NA | NA |
| 13 | 2025-11-29 |
Sensorless End-to-End Freehand 3-D Ultrasound Reconstruction With Physics-Guided Deep Learning
2024-Nov, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2024.3465214
PMID:39302786
|
研究论文 | 提出一种无需传感器的端到端自由手3D超声重建方法,通过物理引导的深度学习技术解决传统方法中的平面外运动问题 | 设计了新型物理启发的深度神经网络PLPPI模型,无需3D卷积即可实现自由手3D超声重建,显著提升重建精度并大幅减少计算资源需求 | 未明确说明模型在复杂临床环境中的泛化能力和对不同解剖部位的适应性 | 开发无需运动传感器的自由手3D超声重建方法,提高重建质量并降低计算资源需求 | 自由手扫描获取的3D超声图像 | 医学影像处理 | 心脏疾病、产科疾病、腹部疾病、血管疾病 | 3D超声成像 | 深度神经网络 | 超声图像序列 | NA | NA | PLPPI | 平均百分比误差、计算时间、GPU内存使用量 | GPU |
| 14 | 2025-11-28 |
A Multi-Task Transformer With Local-Global Feature Interaction and Multiple Tumoral Region Guidance for Breast Cancer Diagnosis
2024-11, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3454000
PMID:39226204
|
研究论文 | 提出一种用于乳腺癌超声图像肿瘤分割和分类的多任务Transformer网络 | 设计了局部-全局特征交互的双流编码器和多肿瘤区域引导模块,能够显式学习肿瘤内部和周围区域的长程非局部依赖关系 | NA | 开发基于深度学习的乳腺癌超声图像自动诊断方法 | 乳腺癌超声图像 | 计算机视觉 | 乳腺癌 | 超声成像 | CNN, Transformer | 图像 | 两个乳腺癌超声数据集,包含大型外部验证数据集 | NA | 双流编码器(CNN+Transformer), 多肿瘤区域引导模块 | 诊断准确率 | NA |
| 15 | 2025-11-26 |
Non-coding genetic variants underlying higher prostate cancer risk in men of African ancestry
2024-Nov-15, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.11.14.24317278
PMID:39606387
|
研究论文 | 通过深度学习模型识别非编码遗传变异解释非洲裔男性前列腺癌高风险机制 | 首次系统探索非编码调控多态性在驱动前列腺癌种族差异中的作用,并发现约2000个与增强子功能相关的SNP | 研究主要关注非洲裔男性群体,需要进一步验证在其他人群中的普适性 | 解析非洲裔男性前列腺癌高风险的非编码遗传机制 | 非洲裔和欧洲裔男性的前列腺癌遗传变异 | 计算生物学 | 前列腺癌 | 全基因组关联研究,深度学习,实验验证 | 深度学习 | 基因组序列数据 | 多祖先群体队列数据 | NA | 基于序列的深度学习模型 | 实验验证,风险评分评估 | NA |
| 16 | 2025-11-24 |
Detection of glaucoma progression on longitudinal series of en-face macular optical coherence tomography angiography images with a deep learning model
2024-Nov-22, The British journal of ophthalmology
DOI:10.1136/bjo-2023-324528
PMID:39117359
|
研究论文 | 开发了一种基于深度学习模型的青光眼进展检测方法,使用纵向系列黄斑光学相干断层扫描血管成像图像 | 首次设计定制化卷积神经网络用于基于纵向OCTA图像的青光眼进展检测,性能优于传统的逻辑回归模型 | 样本量相对较小(202只眼),需要外部验证来确认模型的泛化能力 | 开发深度学习模型用于青光眼进展的自动检测 | 134名开角型青光眼患者的202只眼睛 | 计算机视觉 | 青光眼 | 光学相干断层扫描血管成像(OCTA) | CNN | 图像 | 202只眼睛,平均随访3.5年,每只眼至少4次OCTA检查 | NA | 定制化卷积神经网络 | AUC, 敏感度, 特异度, 准确率 | NA |
| 17 | 2025-11-23 |
SCC-NET: segmentation of clinical cancer image for head and neck squamous cell carcinoma
2024-Nov, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.6.065501
PMID:39583005
|
研究论文 | 提出一种基于神经架构搜索U-Net的改进模型SCC-NET,用于头颈部鳞状细胞癌内镜图像的病灶分割 | 提出可学习离散小波池化技术,结合通道注意力模块为不同层输出分配权重,并引入CSPNet的跨阶段部分设计 | 仅使用单一医疗中心数据,样本量相对有限 | 开发头颈部鳞状细胞癌内镜图像的自动分割算法 | 头颈部鳞状细胞癌内镜图像 | 数字病理 | 头颈部鳞状细胞癌 | 内镜检查 | U-Net, CSPNet | 图像 | 556张经病理确认的鳞状细胞癌照片 | NA | SCC-NET, U-Net, CSPNet | mIOU, Dice相似系数, 准确率, 召回率 | NA |
| 18 | 2025-11-22 |
Applications of Deep Learning Techniques in Healthcare Systems: A Review
2024-Nov, Journal of clinical practice and research
DOI:10.14744/cpr.2024.25381
PMID:41257169
|
综述 | 本文综述了深度学习技术在医疗保健系统中的应用研究 | 系统梳理了卷积神经网络、堆叠自编码器和循环神经网络等主流深度学习方法在医疗领域的应用现状 | 未涉及具体实验验证和性能对比分析 | 探讨深度学习技术在医疗保健领域的应用前景 | 医疗图像分析、药物研发和远程患者监测 | 机器学习 | NA | 深度学习 | CNN, SAE, RNN | 图像, 时间序列数据 | NA | NA | 卷积神经网络, 堆叠自编码器, 循环神经网络 | NA | NA |
| 19 | 2025-11-17 |
Super-resolution multi-contrast unbiased eye atlases with deep probabilistic refinement
2024-Nov, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.6.064004
PMID:39554509
|
研究论文 | 提出一种结合超分辨率预处理和深度概率模型的方法,用于创建高分辨率无偏眼部图谱 | 将深度学习超分辨率算法与无监督深度概率方法相结合,生成更广泛的变形场以增强器官边界对齐 | 需要足够数量的受试者样本才能有效优化模板 | 解决在高度变异人群中生成标准化眼部参考图谱的挑战 | 眼部器官(眼眶和视神经)的形态学特征 | 医学影像分析 | 眼科疾病 | 磁共振成像(MRI) | 深度学习, 概率模型 | 多对比度磁共振图像 | NA | NA | NA | Dice系数, Wilcoxon符号秩检验 | NA |
| 20 | 2025-11-16 |
Machine Learning to Predict Potential Energy Surface of Resveratrol Drug: A Quantum-Level Calculation
2024-Nov-14, ACS medicinal chemistry letters
IF:3.5Q2
DOI:10.1021/acsmedchemlett.4c00382
PMID:39563810
|
研究论文 | 使用ANI-1x神经网络势能预测白藜芦醇药物的势能面 | 首次将ANI-1x深度学习技术应用于抗帕金森药物白藜芦醇的量子级势能面预测 | 仅针对单一分子进行验证,未涉及更复杂的药物分子体系 | 开发快速准确的药物分子势能面预测方法 | 白藜芦醇(3,5,4'-三羟基芪)分子 | 机器学习 | 帕金森病 | 密度泛函理论,量子化学计算 | 神经网络 | 量子化学计算数据 | NA | ANI | ANI-1x | NA | NA |