本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2025-04-16 |
Integrating Interpretability in Machine Learning and Deep Neural Networks: A Novel Approach to Feature Importance and Outlier Detection in COVID-19 Symptomatology and Vaccine Efficacy
2024-11-29, Viruses
DOI:10.3390/v16121864
PMID:39772174
|
研究论文 | 本研究提出了一种新颖的方法,整合了传统机器学习和深度神经网络的可解释性技术,用于量化特征重要性并检测COVID-19症状学和疫苗效力中的异常值 | 该方法弥合了可解释的机器学习模型与强大的深度学习架构之间的差距,为模型预测背后的关键驱动因素提供了全面的见解 | 研究仅使用了2020年早期的COVID-19疫情数据,样本可能不够全面 | 提高对COVID-19症状学的理解并增强早期病例检测 | COVID-19检测个体的自我报告症状和测试结果 | 机器学习 | COVID-19 | 机器学习和深度学习的可解释性技术 | 传统ML和DNN | 医疗数据 | 2020年早期接受COVID-19检测的个体数据集 |
2 | 2025-04-13 |
Deep Learning-Based Classification of Histone-DNA Interactions Using Drying Droplet Patterns
2024-Nov, Small science
IF:11.1Q1
DOI:10.1002/smsc.202400252
PMID:40213456
|
研究论文 | 本研究利用深度学习神经网络对源自不同组蛋白-DNA混合物的干燥液滴沉积物的偏振光显微镜图像进行分类,以预测组蛋白-DNA结合亲和力 | 首次发现组蛋白-DNA相互作用可以通过染色模式进行分层,并应用深度学习实现高准确度的DNA分类和结合亲和力预测 | 对于训练集未包含的物种样本,预测准确度有所下降 | 开发可扩展且准确的蛋白质-DNA结合分类预测分析方法 | 组蛋白-DNA相互作用 | 数字病理学 | NA | 偏振光显微镜 | CNN | 图像 | 多种物种的DNA样本(具体数量未明确说明) |
3 | 2025-04-12 |
Sparse Annotation is Sufficient for Bootstrapping Dense Segmentation
2024-Nov-14, Research square
DOI:10.21203/rs.3.rs-5339143/v1
PMID:39606484
|
研究论文 | 提出一种基于深度学习的方法,通过稀疏的2D标注快速生成密集的3D分割,用于生物成像数据的实例分割任务 | 开发了一种新颖的深度学习方法,能够从单一切片上的少量对象稀疏标注中快速生成密集的3D分割,显著减少了人工标注时间和非专家标注的需求 | 未明确提及方法的适用范围或在不同类型生物成像数据上的泛化能力 | 解决生物成像数据中密集3D重建的实例分割任务,减少生成训练数据所需的人工标注时间和专家依赖 | 大脑神经纤维网中的树突、轴突和胶质细胞过程 | 数字病理 | NA | 深度学习 | NA | 图像 | 未明确提及具体样本数量,但涉及大型图像体积 |
4 | 2025-04-11 |
Rapid response to fast viral evolution using AlphaFold 3-assisted topological deep learning
2024-Nov-19, ArXiv
PMID:39606716
|
研究论文 | 提出了一种结合AlphaFold 3和多任务拓扑拉普拉斯策略的深度学习方法,用于快速响应病毒的快速进化 | 结合AlphaFold 3和多任务拓扑拉普拉斯策略,提高了对病毒突变的预测能力 | 与实验结构相比,Pearson相关系数平均下降1.1%,均方根误差平均增加9.3% | 快速响应病毒的快速进化,提高病毒追踪、诊断和抗体设计的效率 | SARS-CoV-2和其他传染性病毒 | 机器学习 | 传染病 | 拓扑深度学习(TDL)、深度突变扫描(DMS)、拓扑数据分析(TDA) | 多任务拓扑拉普拉斯(MT-TopLap) | 蛋白质-蛋白质相互作用(PPI)复合物结构 | 四个实验性DMS数据集(SARS-CoV-2刺突受体结合域(RBD)和人血管紧张素转换酶-2(ACE2)复合物) |
5 | 2025-04-10 |
Use of Artificial Intelligence in Imaging Dementia
2024-11-27, Cells
IF:5.1Q2
DOI:10.3390/cells13231965
PMID:39682713
|
research paper | 本文探讨了人工智能在痴呆症影像诊断中的应用及其潜力 | 利用图卷积网络框架为阿尔茨海默病及其前驱阶段提供多模态稀疏可解释性支持,并开发了基于卷积神经网络的方法进行外部验证 | 人工智能在临床实践中的应用面临技术、疾病相关和制度性挑战 | 改善痴呆症患者的诊断和预后 | 老年痴呆症患者,包括阿尔茨海默病、血管性痴呆、路易体痴呆等 | digital pathology | geriatric disease | machine learning, deep learning | CNN, GCN | image | NA |
6 | 2025-04-10 |
Integrated Biochemical and Computational Methods for Deciphering RNA-Processing Codes
2024 Nov-Dec, Wiley interdisciplinary reviews. RNA
DOI:10.1002/wrna.1875
PMID:39523464
|
review | 本文系统总结了用于解析五种重要RNA编码(包括可变剪接、可变多聚腺苷酸化、RNA定位、RNA修饰和RBP结合)的生化和计算方法 | 结合机器学习和深度学习模型,从DNA序列中学习RNA转化的规则或编码,并探讨了使用大型语言模型和广泛领域知识开发预测模型时遇到的挑战 | 未提及具体样本量或实验数据的具体限制 | 将大数据转化为生物学知识,预测RNA产物,解码分子机制,预测疾病变异对RNA加工事件的影响,并识别驱动突变 | RNA加工过程中的五种重要编码 | 自然语言处理 | NA | 高通量测序技术 | 机器学习和深度学习模型 | DNA序列数据 | NA |
7 | 2025-04-06 |
Domain Progressive Low-dose CT Imaging using Iterative Partial Diffusion Model
2024-Nov-07, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3492260
PMID:39509314
|
研究论文 | 提出了一种基于迭代部分扩散模型(IPDM)的新型域渐进低剂量CT成像框架,以解决现有深度学习方法在低剂量CT成像中的泛化性问题 | 利用迭代部分扩散模型完成去噪任务,同时减少时间消耗和收敛困难;提出条件引导采样方法减轻采样偏差;基于像素级噪声估计的自适应权重策略逐步调整引导强度 | 未明确提及具体局限性 | 提高低剂量CT成像的质量和泛化能力 | 低剂量CT图像 | 计算机视觉 | NA | 扩散模型 | 迭代部分扩散模型(IPDM) | CT图像 | 多样化的数据集(未明确提及具体样本数量) |
8 | 2025-04-06 |
MMD-DTA: A Multi-Modal Deep Learning Framework for Drug-Target Binding Affinity and Binding Region Prediction
2024 Nov-Dec, IEEE/ACM transactions on computational biology and bioinformatics
DOI:10.1109/TCBB.2024.3451985
PMID:39208057
|
研究论文 | 提出了一种多模态深度学习框架MMD-DTA,用于预测药物-靶标结合亲和力及结合区域 | 通过无监督学习同时预测药物-靶标结合亲和力及结合区域,整合了序列和结构信息以提高模型泛化能力 | 未提及具体的数据集规模限制或计算资源需求 | 改进药物-靶标结合亲和力及结合区域的预测方法 | 药物分子和靶标蛋白质 | 机器学习 | NA | 图神经网络和靶标结构特征提取网络 | 多模态深度学习框架 | 序列和结构数据 | 未提及具体样本数量 |
9 | 2025-04-05 |
RiceSNP-ABST: a deep learning approach to identify abiotic stress-associated single nucleotide polymorphisms in rice
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae702
PMID:39757606
|
研究论文 | 提出了一种名为RiceSNP-ABST的深度学习模型,用于识别水稻中与非生物胁迫相关的单核苷酸多态性(SNPs) | 开发了一种新的负样本构建策略,提出了四种基于DNA序列片段的特征编码方法,并采用带有残差连接的卷积神经网络进行预测 | 高质量的水稻非生物胁迫相关数据稀缺,可能影响模型的泛化能力 | 开发预测模型以识别水稻中与非生物胁迫相关的SNPs,助力水稻抗性品种的培育 | 水稻中的单核苷酸多态性(SNPs) | 机器学习 | NA | 全基因组关联研究(GWAS) | CNN | DNA序列 | NA |
10 | 2025-04-05 |
GPS-pPLM: A Language Model for Prediction of Prokaryotic Phosphorylation Sites
2024-11-08, Cells
IF:5.1Q2
DOI:10.3390/cells13221854
PMID:39594603
|
research paper | 介绍了一个名为GPS-pPLM的在线服务器,用于预测原核生物中的磷酸化位点 | 结合了transformer和深度神经网络两种深度学习方法,整合了10种序列特征和上下文特征,构建了针对特定磷酸化残基类型和物种的预测模型 | NA | 预测原核生物中的磷酸化位点 | 原核生物中的磷酸化位点 | natural language processing | NA | transformer, deep neural network | transformer, DNN | protein sequences | 44,839个非冗余磷酸化位点,来自16,041个蛋白质和95种原核生物 |
11 | 2025-04-05 |
Dynamic modulation of social gaze by sex and familiarity in marmoset dyads
2024-Nov-05, bioRxiv : the preprint server for biology
DOI:10.1101/2024.02.16.580693
PMID:38405818
|
research paper | 开发了一种新框架,用于准确追踪自由活动的普通狨猴的面部特征和三维头部注视方向,研究了性别和熟悉度对狨猴互动社交注视行为的影响 | 结合深度学习计算机视觉工具和三角测量算法,实现了对自由活动狨猴面部特征和头部注视方向的准确追踪,克服了传统实验中头部运动受限的问题 | 研究仅针对狨猴这一特定物种,结果可能无法直接推广到其他灵长类动物 | 研究社交因素(性别和熟悉度)如何影响灵长类动物的注视行为 | 自由活动的普通狨猴 | computer vision | NA | 深度学习计算机视觉工具和三角测量算法 | deep learning-based computer vision tools | video | 狨猴成对组合(具体数量未明确说明) |
12 | 2025-04-05 |
An All-in-One Array of Pressure Sensors and sEMG Electrodes for Scoliosis Monitoring
2024-11, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202404136
PMID:39115097
|
研究论文 | 开发了一种集成压力传感器和表面肌电电极的一体化阵列,用于脊柱侧弯监测 | 利用分层MXene/壳聚糖/聚二甲基硅氧烷(PDMS)/聚氨酯海绵和MXene/聚酰亚胺(PI)材料开发了一体化传感器阵列,具有高灵敏度和稳定性,并能通过深度学习预测Cobb角 | 未提及长期临床验证结果或大规模患者测试数据 | 改进脊柱侧弯治疗中支具效果的实时监测方法 | 脊柱侧弯患者 | 生物医学工程 | 脊柱侧弯 | MXene复合材料技术、深度学习 | 深度学习模型(未指定具体类型) | 压力数据、肌电信号 | 未明确说明样本数量 |
13 | 2025-04-04 |
Multicenter investigation of preoperative distinction between primary central nervous system lymphomas and glioblastomas through interpretable artificial intelligence models
2024-Nov, Neuroradiology
IF:2.4Q2
DOI:10.1007/s00234-024-03451-7
PMID:39225815
|
research paper | 本研究通过可解释的人工智能模型,基于MRI图像对原发性中枢神经系统淋巴瘤(PCNSL)和胶质母细胞瘤(GBM)进行术前区分 | 结合了放射组学模型和深度学习模型,提出了最优的Max-Fusion模型,并利用SHAP和Grad-CAM进行可解释性分析 | 研究为回顾性分析,样本量相对有限(261例患者),且仅来自两个医疗中心 | 探索基于MRI的深度学习和放射组学模型在术前区分PCNSL和GBM中的有效性和适用性 | 261例PCNSL和GBM患者的MRI图像和临床数据 | digital pathology | brain tumor | MRI | MobileVIT, ConvNeXt, Max-Fusion Model | image | 261例患者(训练集153例,外部测试集108例) |
14 | 2025-04-03 |
Understanding the role of machine learning in predicting progression of osteoarthritis
2024-Nov-01, The bone & joint journal
|
系统综述 | 本文通过系统综述探讨了机器学习在预测骨关节炎进展中的作用 | 揭示了机器学习模型在预测骨关节炎进展中的可行性及当前临床应用的局限性 | 评估指标缺乏标准化,外部验证有限,临床适用性受限 | 探讨机器学习在预测骨关节炎进展中的应用及其潜力 | 骨关节炎(OA)患者 | 机器学习 | 骨关节炎 | 机器学习算法 | 深度学习,自动化机器学习 | 临床、放射学和生化数据 | 39项研究(初始筛选1,160项) |
15 | 2025-04-01 |
Accurate de novo design of high-affinity protein binding macrocycles using deep learning
2024-Nov-18, bioRxiv : the preprint server for biology
DOI:10.1101/2024.11.18.622547
PMID:39605685
|
研究论文 | 本文介绍了一种基于深度学习的去噪扩散管道RFpeptides,用于设计针对特定蛋白质靶点的大环肽结合物 | 首次提出了一种稳健的方法用于设计蛋白质结合大环肽,克服了传统大规模筛选方法的资源密集和结合模式控制不足的问题 | 研究仅测试了四种不同蛋白质的设计效果,样本量相对有限 | 开发一种高效、可定制的大环肽设计方法,用于诊断和治疗应用 | 蛋白质靶点的大环肽结合物 | 机器学习 | NA | 深度学习 | 去噪扩散模型 | 蛋白质序列和结构数据 | 针对四种不同蛋白质各测试了20个或更少的设计大环肽 |
16 | 2025-04-01 |
The Updated Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT 2.0)
2024-Nov-01, Journal of nuclear medicine : official publication, Society of Nuclear Medicine
IF:9.1Q1
DOI:10.2967/jnumed.124.268292
PMID:39362762
|
research paper | 介绍更新后的REFINE SPECT 2.0注册表的设计和初步结果,该注册表扩展了患者数量和CT衰减校正成像 | 更新后的注册表包含更多患者数据和CT衰减校正成像,利用深度学习软件检测冠状动脉钙化(CAC),并整合了多模态成像 | 仅有8.4%的患者有侵入性冠状动脉造影数据,CT衰减校正成像仅适用于13,405名患者 | 评估SPECT心肌灌注成像的价值,验证新的人工智能工具在多模态成像中预测不良结局的效果 | 45,252名来自13个中心的患者 | digital pathology | cardiovascular disease | SPECT, CT attenuation correction imaging, deep learning | deep learning | image, clinical data | 45,252名患者(55.9%男性,平均年龄64.7±11.8岁) |
17 | 2025-03-30 |
STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae685
PMID:39764614
|
研究论文 | 介绍了一种名为STMGraph的双重掩蔽动态图注意力模型,用于空间转录组数据的全局上下文感知分析 | 提出了一种结合双重掩蔽机制(MASK-REMASK)与动态图注意力模型(DGAT)的新型深度学习框架,能够更好地处理空间转录组数据 | 未明确提及具体局限性 | 提高空间转录组数据分析的准确性和鲁棒性,实现微环境异质性检测、空间域聚类和批次效应校正 | 空间转录组数据 | 生物信息学 | NA | 空间转录组技术 | 动态图注意力模型(DGAT) | 空间转录组数据 | 未明确提及具体样本量 |
18 | 2025-03-29 |
Investigating the Use of Traveltime and Reflection Tomography for Deep Learning-Based Sound-Speed Estimation in Ultrasound Computed Tomography
2024-Nov, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2024.3459391
PMID:39264782
|
研究论文 | 本研究探讨了在超声计算机断层扫描(USCT)中,基于深度学习的声速估计方法中不同输入模态的影响 | 首次系统分析了旅行时间断层扫描(TT)和反射断层扫描(RT)作为输入模态对深度学习重建方法的影响,并提出了双通道输入方法 | 研究主要基于数值乳腺模型,临床数据验证有限 | 提高超声计算机断层扫描中声速重建的准确性和计算效率 | 数值乳腺模型和临床人类乳腺数据 | 医学影像处理 | 乳腺癌 | 超声计算机断层扫描(USCT),旅行时间断层扫描(TT),反射断层扫描(RT) | CNN | 图像 | 数值乳腺模型和临床人类乳腺数据(具体数量未提及) |
19 | 2025-03-28 |
Assessing deep learning reconstruction for faster prostate MRI: visual vs. diagnostic performance metrics
2024-Nov, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-10771-y
PMID:38724765
|
research paper | 评估深度学习重建在加速前列腺MRI中的视觉与诊断性能指标 | 将诊断性深度学习纳入评估框架,提供临床相关指标,以评估重建模型的诊断质量 | 深度学习重建虽然提高了视觉质量,但可能降低诊断准确性 | 评估深度学习重建在前列腺MRI中的视觉和诊断性能 | 1535名患者的前列腺MRI数据 | digital pathology | prostate cancer | 深度学习重建(DLRecon)和诊断性深度学习检测(DLDetect) | DL | MRI图像 | 1535名患者 |
20 | 2025-03-28 |
Deep learning nomogram for predicting neoadjuvant chemotherapy response in locally advanced gastric cancer patients
2024-11, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04331-7
PMID:38796795
|
研究论文 | 开发并验证了一种基于深度学习放射组学的列线图模型,用于预测局部晚期胃癌患者对新辅助化疗的反应 | 结合手工放射组学特征、深度学习特征和临床特征构建列线图模型,提高了预测新辅助化疗反应的准确性 | 研究为回顾性设计,可能存在选择偏倚,且样本量相对有限 | 预测局部晚期胃癌患者对新辅助化疗的治疗反应 | 局部晚期胃癌患者 | 数字病理 | 胃癌 | 多期对比增强CT成像 | EfficientNet V2 | CT图像 | 322名胃癌患者 |