本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
301 | 2024-12-14 |
Using spatial video and deep learning for automated mapping of ground-level context in relief camps
2024-Nov-05, International journal of health geographics
IF:3.0Q2
DOI:10.1186/s12942-024-00382-7
PMID:39501276
|
研究论文 | 本文提出了一种基于空间视频和深度学习的解决方案,用于自动绘制救援营地的地面环境 | 首次提出使用空间视频和深度学习进行动态映射,并开发了空间过滤方法来提高定位精度 | 研究仅在刚果民主共和国的戈马地区进行,结果的普适性有待验证 | 开发一种自动化的方法来绘制救援营地的空间特征,以应对数据收集和可持续性方面的挑战 | 救援营地的空间特征和微环境变化 | 计算机视觉 | NA | 卷积神经网络 (CNN) | 卷积神经网络 (CNN) | 视频 | 来自刚果民主共和国戈马地区的空间视频数据集 |
302 | 2024-12-14 |
A Multi-task Neural Network for Image Recognition in Magnetically Controlled Capsule Endoscopy
2024-Nov, Digestive diseases and sciences
IF:2.5Q2
DOI:10.1007/s10620-024-08681-6
PMID:39407081
|
研究论文 | 本研究构建了一个多任务神经网络模型,用于磁控胶囊内窥镜图像中的胃部解剖部位和胃部病变的识别 | 提出了一种多任务识别模型,能够同时完成胃部解剖部位和胃部病变的识别,相较于现有的单一任务识别模型,具有更高的效率和准确性 | 未提及具体的局限性 | 构建一个能够同时识别胃部解剖部位和胃部病变的多任务模型,以提高医生的诊断效率 | 磁控胶囊内窥镜图像中的胃部解剖部位和胃部病变 | 计算机视觉 | NA | 深度学习 | 多任务神经网络 | 图像 | 886名患者的胶囊内窥镜图像数据 |
303 | 2024-12-13 |
A hybrid deep learning model-based LSTM and modified genetic algorithm for air quality applications
2024-Nov-27, Environmental monitoring and assessment
IF:2.9Q3
DOI:10.1007/s10661-024-13447-8
PMID:39601991
|
研究论文 | 本文提出了一种基于LSTM和改进遗传算法的混合深度学习模型,用于多步PM预测 | 引入了名为EFS-GA-LSTM的新型混合深度学习模型,并使用改进的遗传算法优化其架构 | 未提及具体的研究局限性 | 利用历史数据构建LSTM模型,并通过改进的遗传算法优化其架构,以提高多步PM预测的准确性 | 多步PM预测 | 机器学习 | NA | 深度学习 | LSTM | 数据 | 输入数据包括每小时的PM浓度、气象变量和时间变量 |
304 | 2024-12-13 |
Artificial Intelligence Classification for Detecting and Grading Lumbar Intervertebral Disc Degeneration
2024-Nov-27, Spine surgery and related research
IF:1.2Q3
DOI:10.22603/ssrr.2024-0154
PMID:39659374
|
研究论文 | 本研究开发并验证了一种基于卷积神经网络(CNN)和YOLO架构的人工智能模型,用于基于磁共振成像(MRI)扫描对腰椎间盘退变进行分类和分级 | 本研究首次使用YOLO架构的CNN模型对腰椎间盘退变进行分类和分级,显著提高了诊断的精确性和可靠性 | 尽管模型表现出色,但仍需进一步的临床验证才能将其整合到常规实践中 | 开发和验证一种人工智能模型,用于精确检测和分级腰椎间盘退变 | 腰椎间盘退变 | 计算机视觉 | 脊柱疾病 | 卷积神经网络(CNN) | YOLO架构 | 图像 | 训练集1000例,测试集500例,外部验证集500例 |
305 | 2024-12-13 |
Long-Term Efficacy of an AI-Based Health Coaching Mobile App in Slowing the Progression of Nondialysis-Dependent Chronic Kidney Disease: Retrospective Cohort Study
2024-Nov-25, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/54206
PMID:39402012
|
研究论文 | 本研究评估了基于AI的健康指导移动应用KidneyOnline在减缓非透析依赖性慢性肾病进展方面的长期疗效 | 本研究首次通过回顾性队列研究验证了基于AI的移动应用在减缓慢性肾病进展中的有效性 | 本研究为回顾性研究,可能存在选择偏倚和混杂因素的影响 | 评估KidneyOnline智能护理系统在减缓非透析依赖性慢性肾病进展方面的长期疗效 | 使用KidneyOnline应用的慢性肾病患者和接受常规护理的患者 | NA | 慢性肾病 | 深度学习光学字符识别 | NA | 健康数据 | 12,297名患者,其中808名患者通过1:1倾向评分匹配分为KidneyOnline护理系统组和常规护理组各404名 |
306 | 2024-12-13 |
Evaluation of machine learning and deep learning models for daily air quality index prediction in Delhi city, India
2024-Nov-19, Environmental monitoring and assessment
IF:2.9Q3
DOI:10.1007/s10661-024-13351-1
PMID:39557698
|
研究论文 | 本文评估了机器学习和深度学习模型在印度德里市每日空气质量指数预测中的表现 | 本文引入了XGBoost算法和随机森林(RF)模型,并结合特征重要性分析和Shapley加性解释(SHAP)方法,以提高空气质量指数预测的准确性 | 本文未详细讨论模型在不同天气条件或季节变化下的表现 | 开发和评估用于预测德里市每日空气质量指数的高级模型,以帮助城市规划和空气污染控制 | 德里市的空气质量指数预测 | 机器学习 | NA | 机器学习算法(XGBoost、随机森林、人工神经网络) | XGBoost、随机森林、人工神经网络 | 空气质量数据 | NA |
307 | 2024-12-13 |
A lightweight intelligent laryngeal cancer detection system for rural areas
2024 Nov-Dec, American journal of otolaryngology
IF:1.8Q2
DOI:10.1016/j.amjoto.2024.104474
PMID:39137696
|
研究论文 | 本文介绍了一种轻量级的智能喉癌检测系统(ILCDS),旨在为资源有限的农村地区提供有效的喉癌筛查 | 提出了一个专门为农村地区设计的智能喉癌检测系统,结合了多种深度学习模型进行评估和选择,最终选择了适合农村环境的模型 | 未提及具体的局限性 | 开发一种适合农村地区的智能喉癌检测系统,以提高喉癌筛查的准确性和效率 | 喉癌的早期诊断和筛查 | 计算机视觉 | 喉癌 | 深度学习 | AlexNet, VGG, ResNet, DenseNet, MobileNet, ShuffleNet, Vision Transformer, Swin Transformer | 图像 | 2023张喉镜图像 |
308 | 2024-12-13 |
Analysis of international publication trends in artificial intelligence in skin cancer
2024 Nov-Dec, Clinics in dermatology
IF:2.3Q2
|
研究论文 | 使用文献计量方法分析2010年至2022年间人工智能在皮肤癌领域的国际出版趋势 | 揭示了人工智能在皮肤癌研究中的出版趋势和未来方向,并通过共被引网络分析识别了该领域的经典文献 | 研究仅基于Web of Science数据库中的英文文献,可能存在数据偏倚 | 探索人工智能在皮肤癌研究中的出版趋势和未来发展方向 | 2010年至2022年间人工智能在皮肤癌领域的出版物 | 机器学习 | 皮肤癌 | 文献计量方法 | NA | 文本 | 989篇出版物 |
309 | 2024-12-13 |
Entomopathogenic nematode detection and counting model developed based on A-star algorithm
2024-Nov, Journal of invertebrate pathology
IF:3.6Q1
DOI:10.1016/j.jip.2024.108196
PMID:39260520
|
研究论文 | 本文提出了一种基于A*算法的新方法,用于检测和量化显微镜图像中的斯氏线虫,以提高检测精度并简化操作流程 | 本文提出的A*算法在检测精度上显著优于YOLO-V5m、YOLO-V7m和YOLO-V8m,并且在处理重叠线虫时表现尤为出色 | NA | 开发一种高效的方法用于检测和计数实验室中的斯氏线虫,以替代传统的人工计数方法 | 斯氏线虫(Steinernema feltiae)的检测和计数 | 计算机视觉 | NA | A*算法 | NA | 图像 | NA |
310 | 2024-12-13 |
Harnessing Artificial Intelligence (AI) in Anaesthesiology: Enhancing Patient Outcomes and Clinical Efficiency
2024-Nov, Cureus
DOI:10.7759/cureus.73383
PMID:39659330
|
综述 | 本文系统回顾了人工智能(AI)在麻醉学领域的进展及其潜在应用 | 探讨了AI在麻醉学中的创新应用,如个性化药物剂量、实时生命体征监测、自动化麻醉输送系统和不良事件预测分析 | 讨论了AI在麻醉学应用中的局限性和缺陷,并强调了伦理考量 | 研究AI在麻醉学领域的现状及未来潜在应用 | AI在麻醉学中的应用及其对患者结果和临床效率的影响 | NA | NA | 机器学习(ML)、深度学习(DL)、神经网络 | NA | NA | NA |
311 | 2024-12-12 |
Conformational ensemble-based framework enables rapid development of Lassa virus vaccine candidates
2024-Nov-22, bioRxiv : the preprint server for biology
DOI:10.1101/2024.11.21.624760
PMID:39605488
|
研究论文 | 本文利用基于构象集合的框架,通过AI驱动的深度学习方法,快速开发了拉沙病毒疫苗候选物 | 采用AlphaFold2的变体(subsampled AF2)生成拉沙病毒糖蛋白复合物(GPC)的多样化结构,并通过ProteinMPNN重新设计GPC序列,以减少变构域的移动性,从而优化疫苗设计 | 需要进一步实验验证重新设计的GPC序列的免疫原性和保护效果 | 开发一种基于AI的框架,用于快速设计和优化拉沙病毒疫苗候选物 | 拉沙病毒的糖蛋白复合物(GPC)及其免疫原性 | 机器学习 | NA | AlphaFold2(AF2),ProteinMPNN | 深度学习模型 | 蛋白质结构 | 一个小型重新设计的GPC序列库 |
312 | 2024-12-12 |
Learning Interpretable Brain Functional Connectivity via Self-Supervised Triplet Network With Depth-Wise Attention
2024-11, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3429169
PMID:39028590
|
研究论文 | 本文提出了一种自监督的三元组网络与深度注意力机制(TripletNet-DA),用于学习可解释的大脑功能连接 | 创新点在于使用自监督的三元组网络结合深度注意力机制,能够生成可解释的功能连接特征,并在自闭症谱系障碍和重度抑郁症的分类任务中表现优异 | NA | 研究目的是解决传统功能连接测量方法的局限性,提出一种能够捕捉可解释功能连接特征的深度学习方法 | 研究对象是自闭症谱系障碍和重度抑郁症患者的大脑功能连接 | 机器学习 | 自闭症谱系障碍 | 深度学习 | 三元组网络 | 脑电图 | NA |
313 | 2024-12-12 |
Predicting Continuous Locomotion Modes via Multidimensional Feature Learning From sEMG
2024-11, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3441600
PMID:39133593
|
研究论文 | 本研究提出了一种名为Deep-STF的端到端深度学习模型,用于从表面肌电图(sEMG)信号中进行多维特征提取,以预测连续的运动模式和过渡 | Deep-STF模型在空间、时间和频率维度上进行集成特征提取,能够准确且稳健地预测九种运动模式和十五种过渡,且在不同预测时间间隔内表现出色 | 在测试新地形时,模型的预测准确性有所下降,尽管通过微调可以提高 | 提高步行辅助设备的智能性和透明度,确保在不同运动模式之间的平滑过渡 | 表面肌电图(sEMG)信号中的多维特征 | 机器学习 | NA | 深度学习 | 深度学习模型 | 信号 | NA |
314 | 2024-12-12 |
GKE-TUNet: Geometry-Knowledge Embedded TransUNet Model for Retinal Vessel Segmentation Considering Anatomical Topology
2024-11, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3442528
PMID:39137084
|
研究论文 | 提出了一种名为GKE-TUNet的新型分割模型,用于视网膜血管分割,考虑了解剖学拓扑结构 | 通过嵌入显式的视网膜血管解剖学拓扑特征,改进了深度学习在提取复杂交织结构和小血管方面的能力 | 未提及具体的局限性 | 开发一种能够有效分割视网膜血管的自动化方法,以辅助临床诊断和视网膜病变筛查 | 视网膜血管的解剖学拓扑结构和分割 | 计算机视觉 | NA | 图卷积网络(GAT) | GKE-TUNet | 图像 | 使用了DRIVE、CHASE-DB1和STARE数据集进行实验 |
315 | 2024-12-12 |
A Physiological-Informed Generative Model for Improving Breast Lesion Classification in Small DCE-MRI Datasets
2024-11, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3443705
PMID:39141452
|
研究论文 | 本文提出了一种基于生理学信息的生成模型,用于在小样本DCE-MRI数据集中提高乳腺病变分类的性能 | 本文的创新点在于结合了生理学基础的药代动力学模型和内在形变自编码器,实现了生理学感知的数据增强策略 | 本文的局限性在于仅在乳腺DCE-MRI数据集上进行了验证,尚未在其他类型的医学图像数据集上进行测试 | 本文的研究目的是提高在小样本DCE-MRI数据集中乳腺病变分类的准确性 | 本文的研究对象是乳腺DCE-MRI数据集中的病变分类 | 计算机视觉 | 乳腺癌 | DCE-MRI | 自编码器 | 图像 | 本文使用了两个私有数据集和一个公共数据集进行测试 |
316 | 2024-12-12 |
Framework for Deep Learning Based Multi-Modality Image Registration of Snapshot and Pathology Images
2024-11, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3444908
PMID:39150810
|
研究论文 | 本文提出了一种基于深度学习的多模态图像配准框架,用于将显微病理图像与其他成像模态进行配准 | 本文的创新点在于提供了一个基于深度学习的多模态图像配准框架,并验证了其在前列腺离体白光相机快照图像与病理苏木精-伊红图像配准中的应用 | 本文的局限性在于仅验证了前列腺样本的配准效果,尚未在其他类型的病理图像上进行广泛验证 | 本文的研究目的是开发一种能够有效配准多模态医学图像的深度学习框架 | 本文的研究对象是前列腺离体白光相机快照图像与病理苏木精-伊红图像的配准 | 数字病理学 | 前列腺癌 | 深度学习 | NA | 图像 | 前列腺样本 |
317 | 2024-12-12 |
Mitigating Diagnostic Errors in Lung Cancer Classification: A Multi-Eyes Principle to Uncertainty Quantification
2024-11, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3446040
PMID:39163183
|
研究论文 | 本文提出了一种基于多模型和不确定性量化技术的Multi-Eyes原则,用于减少肺癌诊断中的误差和认知偏差 | 本文的创新点在于引入了Multi-Eyes原则,通过多种深度学习模型和不确定性量化技术来减少诊断偏差,并提高诊断准确性 | 未来的研究可以探索不同的不确定性量化方法和反馈机制以进一步改进 | 提高计算机辅助诊断系统在肺癌分类中的诊断性能 | 肺癌诊断中的误差和认知偏差 | 计算机视觉 | 肺癌 | 深度学习 | CNN | 图像 | 使用了LIDC-IDRI数据集进行肺癌分类 |
318 | 2024-12-12 |
A Multi-Task Transformer With Local-Global Feature Interaction and Multiple Tumoral Region Guidance for Breast Cancer Diagnosis
2024-11, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3454000
PMID:39226204
|
研究论文 | 本文提出了一种多任务网络,结合局部-全局特征交互和多肿瘤区域引导,用于基于乳腺超声的肿瘤分割和分类 | 本文创新性地提出了一个双流编码器,结合CNN和Transformer,促进局部和全局特征的分层交互与融合,并设计了一个多肿瘤区域引导模块,显式学习肿瘤内和肿瘤周围区域的长程非局部依赖关系 | NA | 提高乳腺超声图像中肿瘤分割和分类的准确性 | 乳腺超声图像中的肿瘤 | 计算机视觉 | 乳腺癌 | 深度学习 | Transformer | 图像 | 两个乳腺超声数据集 |
319 | 2024-12-12 |
A Systematic Review on the Use of Consumer-Based ECG Wearables on Cardiac Health Monitoring
2024-11, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3456028
PMID:39240746
|
综述 | 本文系统回顾了用于心脏健康监测的消费级心电图可穿戴设备,探讨了用于诊断和预防心脏相关疾病的模型或算法,并讨论了采用消费级可穿戴设备进行健康监测的挑战和未来工作 | 本文总结了消费级可穿戴设备的心电图功能、可用的心电图数据集以及用于检测心脏疾病和监测长期健康的各种算法,并讨论了心脏健康监测的集成挑战和未来方向 | 当前文献的潜在局限性包括算法推理和比较的缺乏以及数据泛化能力的有限 | 总结消费级心电图可穿戴设备的使用情况,探讨通过心电图分析诊断和预防心脏相关疾病的模型或算法,并讨论采用消费级可穿戴设备进行健康监测的挑战和未来工作 | 消费级心电图可穿戴设备、心电图信号、心脏相关疾病 | 数字病理学 | 心血管疾病 | 心电图分析 | 卷积神经网络(CNN) | 心电图数据 | 102篇相关论文 |
320 | 2024-12-12 |
LHAR: Lightweight Human Activity Recognition on Knowledge Distillation
2024-11, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3298932
PMID:37494155
|
研究论文 | 本文提出了一种轻量级的人类活动识别框架LHAR,通过知识蒸馏技术提升智能穿戴设备上的个性化用户活动识别准确率 | LHAR框架结合了跨人群活动识别任务与轻量级模型任务,采用教师-学生架构,学生网络使用深度可分离卷积层减少参数,并通过复杂教师模型的暗知识提升泛化能力 | NA | 提升智能穿戴设备上个性化用户活动识别的准确率和效率 | 人类活动识别任务 | 机器学习 | NA | 知识蒸馏 | 深度可分离卷积网络 | 传感器数据 | NA |