深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202411-202411] [清除筛选条件]
当前共找到 1143 篇文献,本页显示第 601 - 620 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
601 2024-11-26
Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites
2024-Nov-25, Journal of chemical information and modeling IF:5.6Q1
研究论文 研究使用深度学习算法预测蛋白质在配体结合时的构象变化,特别是针对别构位点的变化 首次系统研究了深度学习方法在预测蛋白质别构诱导适应构象变化方面的潜力和局限性 深度学习方法在预测别构诱导适应构象方面仍存在挑战,准确性不如预测正构位点结合构象 探讨深度学习算法在预测蛋白质别构和正构位点结合时的构象变化中的应用 蛋白质在配体结合时的构象变化,特别是别构位点的变化 计算生物学 NA 深度学习 AlphaFold2, NeuralPLexer, RoseTTAFold All-Atom 蛋白质结构数据 578个X射线结构数据
602 2024-11-26
CACHE Challenge #1: Targeting the WDR Domain of LRRK2, A Parkinson's Disease Associated Protein
2024-Nov-25, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文报道了首届CACHE挑战赛的结果,该挑战赛旨在评估计算命中发现领域的进展 首次针对帕金森病相关蛋白LRRK2的WDR域进行计算命中发现,展示了多种计算方法的应用 实验验证的化合物稀少且效力较弱,表明现有技术不足以有效解决具有挑战性的靶点 评估计算命中发现方法在帕金森病靶点LRRK2的WDR域中的应用效果 LRRK2蛋白的WDR域及其潜在的结合化合物 药物设计 帕金森病 分子动力学、片段对接、生成设计策略、深度学习 NA 化合物 23个计算团队,共预测了1955个分子,其中73个分子在SPR测定中显示出结合活性
603 2024-11-26
Data-Based Prediction of Redox Potentials via Introducing Chemical Features into the Transformer Architecture
2024-Nov-25, Journal of chemical information and modeling IF:5.6Q1
研究论文 本文开发了一种基于化学语言模型的深度学习方法TransChem,用于预测有机分子的氧化还原电位 引入化学特征到Transformer架构中,结合空间和电子特征的分子表征,以及非线性分子信息传递方法Mol-Attention和扰动学习方法 NA 加速目标导向的新反应和材料设计 有机分子的氧化还原电位 机器学习 NA 深度学习 Transformer 分子数据 超过100,000个有机自由基数据,2,1,3-苯并噻二唑数据集(<3000数据点),电子亲和力数据集(660数据),以及自开发的全空间二取代苯酚氧化电位数据集(OPP-data set,总计74,529)
604 2024-11-26
[De novo protein design in the age of artificial intelligence]
2024-Nov-25, Sheng wu gong cheng xue bao = Chinese journal of biotechnology
综述 本文综述了蛋白质设计的演变过程,重点介绍了最新的算法模型,并分析了当前存在的挑战和未来趋势 本文探讨了人工智能和深度学习生成模型在蛋白质设计中的应用,展示了其在功能蛋白质设计中的潜力 当前蛋白质设计面临设计成功率低、精度不足以及依赖实验验证等挑战 本文旨在为蛋白质设计领域的研究人员和从业者提供见解 本文主要研究蛋白质设计及其在生物医学和纳米技术中的应用 生物信息学 NA 深度学习 生成模型 序列数据 NA
605 2024-11-26
Efficient deep learning based rail fastener screw detection method for fastener screw maintenance robot under complex lighting conditions
2024-Nov-22, Scientific reports IF:3.8Q1
研究论文 提出了一种基于YOLO的轻量级模型LFGB-YOLO,用于在复杂光照条件下检测铁路扣件螺栓 引入了Light-Fast部分和GB-Neck部分,分别优化了网络参数和特征融合能力,提高了检测精度和速度 未提及具体限制 开发一种在复杂光照条件下高效检测铁路扣件螺栓的方法,以支持维护机器人 铁路扣件螺栓 计算机视觉 NA 深度学习 YOLO 图像 未提及具体样本数量
606 2024-11-26
Crop classification in the middle reaches of the Hei River based on model transfer
2024-Nov-22, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于模型迁移的作物分类方法,用于黑河流域中游地区 通过生成多源光谱数据(MSSD)并利用预训练模型进行微调,实现了在无样本年份的作物分类 依赖于预训练模型的准确性,且实验仅使用了四种模型进行验证 提高在黑河流域中游地区作物分类的准确性,减少对大规模样本数据的依赖 黑河流域中游地区的作物分类 计算机视觉 NA 遥感技术 CNN 光谱数据 使用了三种基于CNN的深度学习模型和一个机器学习模型(RF)进行实验
607 2024-11-26
Multimodal machine learning for language and speech markers identification in mental health
2024-Nov-22, BMC medical informatics and decision making IF:3.3Q2
研究论文 本文研究了使用多模态机器学习方法识别语言和语音标记在精神健康诊断中的应用 本文结合了单模态和多模态方法,通过识别和编译广泛的精神健康障碍标记,评估多模态方法是否优于单模态方法 本文主要使用DAIC-WOZ数据集,且未探讨更复杂的融合技术和深度学习模型 评估多模态方法在精神健康诊断中是否优于单模态方法 语言和语音数据中的精神健康障碍标记 机器学习 精神健康障碍 多模态机器学习 支持向量机、逻辑回归、随机森林、全连接神经网络 文本和音频 使用DAIC-WOZ数据集中的临床访谈数据
608 2024-11-26
Screening for severe coronary stenosis in patients with apparently normal electrocardiograms based on deep learning
2024-Nov-22, BMC medical informatics and decision making IF:3.3Q2
研究论文 本文开发了一种基于深度学习模型,用于在心电图(ECG)看似正常的情况下筛查严重冠状动脉狭窄的患者 本文首次使用深度学习模型结合迁移学习技术,从看似正常的心电图中提取深层特征,以识别严重冠状动脉狭窄 模型在单独使用心电图数据时敏感性较低,添加临床信息后特异性下降 开发一种有效模型,区分心电图看似正常患者中的严重冠状动脉狭窄与无或轻度狭窄 392名患者,其中138名患有严重狭窄 机器学习 心血管疾病 深度学习 深度学习模型 心电图数据和临床信息 392名患者,包括138名严重狭窄患者
609 2024-11-26
VGAE-CCI: variational graph autoencoder-based construction of 3D spatial cell-cell communication network
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
研究论文 提出了一种基于变分图自编码器的深度学习框架VGAE-CCI,用于构建三维空间细胞间通信网络 该方法能够识别跨多个组织层的细胞间通信,并适用于具有缺失或部分不完整数据的空间转录组数据 未提及具体限制 解决空间转录组数据中数据不完整和系统偏差问题,以及现有方法在分析跨多层组织细胞间通信方面的不足 细胞间通信网络 生物信息学 NA 空间转录组测序 (ST-seq) 变分图自编码器 (VGAE) 空间转录组数据 六个数据集
610 2024-11-26
Repun: an accurate small variant representation unification method for multiple sequencing platforms
2024-Nov-22, Briefings in bioinformatics IF:6.8Q1
研究论文 本文介绍了一种名为Repun的单体型感知变异对齐统一算法,用于在不同测序平台之间统一变异表示 Repun利用单体型信息加速变异与候选单体型的匹配过程,提高了统一过程的效率 NA 确保不同测序平台和条件下变异表示的一致性,为下游分析提供可靠的基础 不同测序平台(Oxford Nanopore Technology, Pacific Biosciences, Illumina)的变异表示 基因组学 NA 测序技术 NA 基因组数据 多个Genome in a Bottle Consortium样本
611 2024-11-26
Chisco: An EEG-based BCI dataset for decoding of imagined speech
2024-Nov-21, Scientific data IF:5.8Q1
研究论文 本文介绍了一个基于EEG的BCI数据集Chisco,用于解码想象中的语音 本文首次提供了一个大规模的想象语音EEG数据集Chisco,包含超过20,000句高密度EEG记录,填补了该领域的数据空白 NA 本文旨在提供一个高质量的EEG数据集,以促进脑机接口技术的发展 本文的研究对象是健康成年人的想象语音EEG数据 脑机接口 NA EEG NA EEG数据 超过20,000句EEG记录,来自健康成年人,每人数据超过900分钟
612 2024-11-26
Enhanced MobileNet for skin cancer image classification with fused spatial channel attention mechanism
2024-11-21, Scientific reports IF:3.8Q1
研究论文 本文提出了一种改进的MobileNet模型,结合空间通道注意力机制用于皮肤癌图像分类 引入了一种新的注意力机制,用于揭示图像中的全局关联信息,从而提高分类性能 未提及具体的局限性 提高皮肤癌图像分类的准确性,以提升患者的生存率并减轻公共卫生负担 皮肤癌图像 计算机视觉 皮肤癌 卷积神经网络 MobileNet 图像 使用了国际皮肤成像协作组织2019年公开数据集(ISIC-2019)
613 2024-11-26
The diagnostic value of MRI segmentation technique for shoulder joint injuries based on deep learning
2024-11-21, Scientific reports IF:3.8Q1
研究论文 研究基于深度学习的MRI图像分割技术在游泳者肩关节损伤诊断中的应用价值 开发了一种新的多尺度特征融合网络(MSFFN),通过优化和整合AlexNet和U-Net算法,用于肩关节MRI图像的分割 研究样本仅限于52名游泳者,可能存在样本量不足的问题 评估基于深度学习的MRI图像分割技术在诊断游泳者肩关节损伤中的有效性 游泳者的肩关节损伤 计算机视觉 运动损伤 MRI图像分割 多尺度特征融合网络(MSFFN) 图像 52名游泳者
614 2024-11-26
The urine formed element instance segmentation based on YOLOv5n
2024-11-19, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种基于YOLOv5n的尿液形成元素实例分割模型,用于快速准确地检测和分割尿液中的形成元素 本研究创新性地将YOLOv5n与小FCN网络结合,实现了对尿液形成元素的快速且准确的实例分割 本研究仅使用了500张图像的数据集进行验证,数据集规模较小,可能影响模型的泛化能力 开发一种基于深度学习的自动化尿液形成元素分析方法,以提高临床疾病诊断的准确性和效率 尿液中的形成元素,如尿液细胞等 计算机视觉 泌尿系统疾病 YOLOv5n YOLOv5n 图像 500张尿液形成元素图像
615 2024-11-26
Convolutional neural network for oral cancer detection combined with improved tunicate swarm algorithm to detect oral cancer
2024-11-19, Scientific reports IF:3.8Q1
研究论文 本文提出了一种结合改进的海鞘群算法的卷积神经网络用于口腔癌检测 本文创新性地将改进的海鞘群算法与卷积神经网络结合,提高了口腔癌检测的准确性 NA 开发一种更准确的口腔癌检测方法 口腔癌患者的图像数据 计算机视觉 口腔癌 卷积神经网络 CNN 图像 口腔癌图片数据集
616 2024-11-25
Wafer-Scale Ag2S-Based Memristive Crossbar Arrays with Ultra-Low Switching-Energies Reaching Biological Synapses
2024-Nov-22, Nano-micro letters IF:31.6Q1
研究论文 本文报道了基于Ag2S的晶圆级忆阻器交叉阵列,实现了超低开关能量,接近生物突触水平 通过微结构调制增强Ag在Ag2S电解质中的迁移,实现了创纪录的低阈值电压和超低开关能量 忆阻器单元的固有非理想性需要通过先进的训练算法进行补偿 开发一种具有超高能效的神经形态计算设备 基于Ag2S的忆阻器交叉阵列 NA NA 忆阻器技术 NA NA NA
617 2024-11-25
Computed tomography-based radiomics and body composition model for predicting hepatic decompensation
2024-Nov-22, Oncotarget
研究论文 研究利用基于CT的放射组学和身体成分模型预测肝功能失代偿 首次将放射组学与身体成分模型结合,用于预测PSC患者的肝功能失代偿 预测未来事件仍具有挑战性,需要进一步研究验证临床效用和局限性 探索计算放射组学在预测PSC患者肝功能失代偿中的潜在价值 PSC患者及其肝功能失代偿 数字病理学 肝病 计算放射组学 深度学习模型 医学图像 训练和验证队列的具体样本数量未明确说明
618 2024-11-25
Deep learning based emulator for predicting voltage behaviour in lithium ion batteries
2024-Nov-21, Scientific reports IF:3.8Q1
研究论文 本研究使用长短期记忆深度学习模型构建了一个数据驱动的电池仿真器,用于预测锂离子电池的充放电行为 本研究通过使用机器学习模型,显著减少了大规模汽车原型电池制造的经济成本和时间,并展示了高预测准确性 本研究主要集中在实验室生产的电池数据和模拟数据上,未涉及实际大规模生产中的应用 本研究的目的是通过数据驱动的仿真方法,减少大规模汽车原型电池制造的经济成本和时间 本研究的对象是锂离子电池的充放电行为 机器学习 NA 长短期记忆(LSTM)深度学习模型 LSTM 模拟数据和实验数据 本研究使用了两种数据集:来自Dualfoil模型的模拟数据和来自液态锂离子电池的实验数据,训练数据集包括五个充放电数据集
619 2024-11-25
Leveraging a deep learning generative model to enhance recognition of minor asphalt defects
2024-Nov-21, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种利用深度学习生成模型增强识别沥青路面小缺陷的方法 提出了AsphaltGAN,一种带有注意力机制的类条件生成对抗网络,用于生成合成图像以增强对象检测 主要关注于生成模型和对象检测的改进,未涉及其他类型的道路缺陷检测 提高沥青路面缺陷检测的自动化和成本效益 沥青路面的小缺陷 计算机视觉 NA 生成对抗网络(GAN) 生成对抗网络(GAN) 图像 使用了Road Damage Detection 2022、Crack Dataset、Asphalt Pavement Detection Dataset和Crack Surface Dataset四个公共数据集
620 2024-11-25
An accurate prediction for respiratory diseases using deep learning on bronchoscopy diagnosis images
2024-Nov-19, Journal of advanced research IF:11.4Q1
研究论文 本文提出了一种多尺度注意力残差网络(MARN)用于通过支气管镜图像诊断肺部疾病 设计了多尺度卷积块注意力模块(MCBAM)以增强空间和通道特征,并使用梯度加权类激活图(Grad-CAM)提高诊断结果的可解释性 NA 提高支气管镜图像诊断肺部疾病的准确性 支气管镜图像中的肺部疾病 计算机视觉 呼吸系统疾病 深度学习 多尺度注意力残差网络(MARN) 图像 615例,包括2900张图像
回到顶部