深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202411-202411] [清除筛选条件]
当前共找到 1161 篇文献,本页显示第 661 - 680 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
661 2024-11-23
Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data
2024-Nov, Computers in biology and medicine IF:7.0Q1
研究论文 开发并验证了一种基于深度学习的儿童胶质瘤患者生存预测模型,通过SEER数据库和中国数据进行回顾性研究 首次使用DeepSurv模型进行儿童胶质瘤患者的生存预测,并展示了其在不同数据集上的优异表现 研究仅限于SEER数据库和Tangdu医院的患者数据,可能存在样本偏倚 开发一种能够准确预测儿童胶质瘤患者预后的深度学习模型,以辅助临床医生制定精确的治疗决策 儿童胶质瘤患者 机器学习 脑肿瘤 深度学习 DeepSurv 临床数据 共9532名儿童胶质瘤患者,其中SEER数据库9274名,Tangdu医院258名
662 2024-10-30
Publisher Correction: Reliable deep learning in anomalous diffusion against out-of-distribution dynamics
2024-Nov, Nature computational science IF:12.0Q1
NA NA NA NA NA NA NA NA NA NA NA NA
663 2024-11-23
Deep generative design of RNA aptamers using structural predictions
2024-Nov, Nature computational science IF:12.0Q1
研究论文 开发了一种基于深度学习的结构到序列平台,用于从头生成RNA适配体 利用结构预测指导RNA适配体的生成设计,设计出结构相似但序列不同的RNA适配体 NA 开发新的RNA适配体设计方法 RNA适配体及其荧光活性 机器学习 NA 深度学习 NA RNA序列 多个生成的RNA适配体
664 2024-11-23
A deep learning model for prediction of autism status using whole-exome sequencing data
2024-Nov, PLoS computational biology IF:3.8Q1
研究论文 开发了一种深度学习模型STAR-NN,用于使用全外显子测序数据预测自闭症状态 STAR-NN模型在输入层分离了不同致病效应的罕见变异,并在同一基因节点上合并,从而更细致地处理了罕见变异 STAR-NN在测试数据集和独立数据集上的ROC-AUC值仅为0.7319和0.7302,表现较为一般 利用深度学习技术预测自闭症状态 自闭症儿童及其基因变异 机器学习 自闭症 全外显子测序 深度学习模型 基因数据 43,203个个体(其中16,809个自闭症患者和26,394个非自闭症对照)
665 2024-11-23
A deep learning approach for rational ligand generation with toxicity control via reactive building blocks
2024-Nov, Nature computational science IF:12.0Q1
研究论文 本文介绍了一种基于深度学习的合理配体生成方法DeepBlock,通过反应性构建块实现毒性控制 提出了DeepBlock方法,将生成过程分为构建块生成和分子重构两步,结合神经网络和基于规则的重构算法,实现了对生成分子属性的精确控制 未提及具体限制 开发一种能够生成具有亲和力、合成可及性和类药性的配体分子,并控制其毒性的深度学习方法 配体分子及其毒性控制 机器学习 NA 深度学习 神经网络 蛋白质序列 未提及具体样本数量
666 2024-11-22
Harnessing deep learning to build optimized ligands
2024-Nov, Nature computational science IF:12.0Q1
NA NA NA NA NA NA NA NA NA NA NA NA
667 2024-11-22
Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap
2024-Nov-26, Neurology IF:7.7Q1
研究论文 本研究使用深度学习技术,通过分析多发性硬化症患者的3D T1加权脑部MRI扫描图像,探讨了脑龄与疾病相关神经退行性变之间的关系 提出了脑预测疾病持续时间差距(DD gap)作为多发性硬化症特异性脑损伤的全球测量指标,并验证了其在解释身体残疾方面的有效性 本研究为回顾性研究,样本主要来自多中心,可能存在数据偏倚 旨在通过深度学习模型区分多发性硬化症患者的脑老化与疾病相关神经退行性变 多发性硬化症患者的3D T1加权脑部MRI扫描图像 计算机视觉 多发性硬化症 深度学习 3D DenseNet 图像 4392名多发性硬化症患者(69.7%为女性,年龄:42.8 ± 10.6岁,疾病持续时间:11.4 ± 9.3年)
668 2024-11-22
Deep learning-assisted morphological segmentation for effective particle area estimation and prediction of interfacial properties in polymer composites
2024-Nov-21, Nanoscale IF:5.8Q1
研究论文 本研究开发了一种自动化且精确的技术,用于在扫描电子显微镜图像中识别和详细映射颗粒位置,并预测聚合物复合材料的界面性能 本研究结合深度卷积神经网络和高级图像处理技术,实现了颗粒识别和位置映射的自动化,并引入了两个分散因子来量化颗粒分散对性能的影响 NA 研究聚合物纳米复合材料的宏观性能与微观结构特征之间的关系,特别是纳米颗粒分散的影响 聚合物纳米复合材料中的纳米颗粒分散及其对界面性能的影响 计算机视觉 NA 深度学习 卷积神经网络 图像 NA
669 2024-11-22
Resolution-dependent MRI-to-CT translation for orthotopic breast cancer models using deep learning
2024-Nov-21, Physics in medicine and biology IF:3.3Q1
研究论文 研究利用生成对抗网络(GANs)从低分辨率MRI图像合成高保真CT图像的可行性 提出了一种定制的U-Net模型和两种GAN模型(Nested U-Net GAN和Attention U-Net GAN),成功将低分辨率MRI图像转换为高分辨率CT图像,解决了其他MRI-CT转换技术中常见的细节丢失问题 NA 减少患者暴露于电离辐射的同时保持治疗准确性并加速MRI图像采集 从低分辨率MRI图像生成高质量CT图像的可行性 计算机视觉 乳腺癌 生成对抗网络(GANs) U-Net 图像 从健康对照和肿瘤模型中获取的配对MRI-CT图像,包括MDA-MB-231和4T1肿瘤细胞注射到裸鼠和BALB/c小鼠的乳腺脂肪垫中
670 2024-11-22
DySurv: dynamic deep learning model for survival analysis with conditional variational inference
2024-Nov-21, Journal of the American Medical Informatics Association : JAMIA IF:4.7Q1
研究论文 提出了一种基于条件变分自编码器的动态深度学习模型DySurv,用于从电子健康记录中动态估计个体死亡风险 DySurv使用静态和纵向测量数据的组合,直接估计累积风险发生函数,无需对潜在随机过程做出任何参数假设 尽管方法利用了非参数扩展来估计生存分布,但仍可探索更多深度学习范式 开发一种新的方法,从纵向健康记录中进行时间到事件的预测 电子健康记录中的静态和纵向测量数据 机器学习 NA 条件变分自编码器 深度学习模型 电子健康记录 6个时间到事件基准数据集和2个来自eICU和MIMIC-IV的真实世界重症监护单元电子健康记录数据集
671 2024-11-22
[Evaluation of the Latest Motion Correction Techniques in Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) Imaging across Different Vendors]
2024-Nov-20, Nihon Hoshasen Gijutsu Gakkai zasshi
研究论文 评估不同供应商的最新PROPELLER技术在头部运动校正中的鲁棒性 量化评估了四家供应商的PROPELLER技术在旋转角度和旋转频率依赖性方面的特性 仅使用模拟人类大脑T2加权图像的幻影进行评估,未涉及实际临床数据 评估最新PROPELLER技术在头部运动校正中的鲁棒性,并探讨其在临床应用中的有效性 不同供应商的PROPELLER技术在头部运动校正中的表现 医学影像 NA PROPELLER成像技术 深度学习重建(DLR) 图像 使用模拟人类大脑T2加权图像的幻影进行评估
672 2024-11-22
Highly Elastic, Fatigue-Resistant, and Antifreezing MXene Functionalized Organohydrogels as Flexible Pressure Sensors for Human Motion Monitoring
2024-Nov-20, ACS applied materials & interfaces IF:8.3Q1
研究论文 本文设计了一种具有双网络结构和可逆交联作用的弹性、抗疲劳和抗冻聚乙烯醇/硫辛酸有机水凝胶,并将其与MXene导电填料结合,用于增强柔性压力传感器的多样化传感性能 本文创新性地设计了一种具有双网络结构和可逆交联作用的有机水凝胶,并结合MXene导电填料,显著提升了柔性压力传感器的性能 NA 开发高性能的柔性压力传感器,用于人体运动监测和人体-计算机交互 聚乙烯醇/硫辛酸有机水凝胶和MXene导电填料 NA NA NA 一维卷积神经网络和长短期记忆网络 NA NA
673 2024-11-22
Fluid Classification via the Dual Functionality of Moisture-Enabled Electricity Generation Enhanced by Deep Learning
2024-Nov-20, ACS applied materials & interfaces IF:8.3Q1
研究论文 本文介绍了一种利用湿电发电(MEG)装置和深度学习技术进行流体分类的新方法 首次将MEG装置与深度学习结合,实现了流体的智能自供电检测 NA 开发一种可持续的智能环境感知技术 流体分类 机器学习 NA 湿电发电(MEG) 宽核深度卷积神经网络(WDCNN) 电压(V)、电流(C)和电阻(R)信号 纯水、猕猴桃、柑橘和柠檬汁四种样品
674 2024-11-22
A systematic review on feature extraction methods and deep learning models for detection of cancerous lung nodules at an early stage -the recent trends and challenges
2024-Nov-20, Biomedical physics & engineering express IF:1.3Q3
综述 本文综述了用于早期检测肺癌结节的特征提取方法和深度学习模型的最新趋势和挑战 本文强调了纹理特征在结合不同深度学习模型中的重要性,并比较了包含特征提取的深度学习模型与不包含特征提取的模型的效果 本文主要讨论了错误识别恶性结节导致的假阳性率高的问题 探讨特征提取与深度学习算法结合在自动化检测肺结节中的应用,以减少假阳性率 肺癌结节的早期检测 计算机视觉 肺癌 低剂量计算机断层扫描(CT) 深度学习模型 图像 NA
675 2024-11-22
Enhancing Gout Diagnosis with Deep Learning in Dual-energy Computed Tomography: A Retrospective Analysis of Crystal and Artifact Differentiation
2024-Nov-20, Rheumatology (Oxford, England)
研究论文 研究评估深度学习在双能计算机断层扫描中区分痛风石和伪影的诊断准确性 首次应用深度学习算法在双能计算机断层扫描中区分痛风石和伪影 研究基于回顾性分析,样本量相对较小 评估深度学习在双能计算机断层扫描中区分痛风石和伪影的诊断准确性 痛风患者和无痛风对照组的双能计算机断层扫描图像 计算机视觉 痛风 双能计算机断层扫描 卷积神经网络和支持向量机 图像 47名痛风患者和27名无痛风对照组,共18704个感兴趣区域
676 2024-11-22
BD-StableNet: a deep stable learning model with an automatic lesion area detection function for predicting malignancy in BI-RADS category 3-4A lesions
2024-Nov-20, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种名为BD-StableNet的深度稳定学习模型,用于自动检测BI-RADS 3-4A类乳腺病变中的恶性肿瘤区域 BD-StableNet结合了深度稳定学习和因果推断,提高了模型的预测性能和可解释性 本文为回顾性研究,未来需要进一步的前瞻性研究验证模型的有效性 提高BI-RADS 3-4A类乳腺病变的诊断准确性和可解释性 BI-RADS 3-4A类乳腺病变中的恶性肿瘤 计算机视觉 乳腺癌 深度稳定学习 深度学习模型 图像 3103张乳腺超声图像,来自493名患者
677 2024-11-22
Exploring the uncertainty principle in neural networks through binary classification
2024-Nov-18, Scientific reports IF:3.8Q1
研究论文 本文探讨了神经网络中精度与鲁棒性之间的内在权衡,通过不确定性原理的视角揭示了神经网络在特征提取精度与对抗扰动敏感性之间的平衡机制 本文通过量子力学的数学方法,为理解深度学习模型的脆弱性提供了理论基础和分析方法 NA 揭示神经网络中精度与鲁棒性之间的内在权衡机制 神经网络在二分类任务中的不确定性和脆弱性 机器学习 NA NA 神经网络 NA NA
678 2024-11-20
Correspondence on 'Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study' by Ye et al
2024-Nov-18, Journal for immunotherapy of cancer IF:10.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA
679 2024-11-22
Prediction of esophageal fistula in radiotherapy/chemoradiotherapy for patients with advanced esophageal cancer by a clinical-deep learning radiomics model : Prediction of esophageal fistula in radiotherapy/chemoradiotherapy patients
2024-Nov-18, BMC medical imaging IF:2.9Q2
研究论文 开发了一种临床-深度学习放射组学模型,用于预测接受放疗或放化疗的晚期食管癌患者中食管瘘的发生 结合临床信息和深度学习放射组学特征,构建了随机森林模型,显著提高了食管瘘的预测准确性 需要进一步验证模型在不同患者群体和临床环境中的适用性 开发一种有效的预测模型,帮助个性化治疗计划,以更好地管理食管癌患者的食管瘘并发症 接受放疗或放化疗的晚期食管癌患者 数字病理学 食管癌 放射组学 随机森林 图像 175名回顾性患者(训练组122名,测试组53名)和27名前瞻性测试患者
680 2024-11-22
Prior information guided deep-learning model for tumor bed segmentation in breast cancer radiotherapy
2024-Nov-18, BMC medical imaging IF:2.9Q2
研究论文 本文提出了一种利用术前和术后CT图像中的肿瘤轮廓信息指导深度学习模型进行肿瘤床分割的方法 利用术前和术后CT图像中的肿瘤轮廓信息作为先验知识,显著提高了肿瘤床分割的准确性 未提及具体限制 开发一种辅助放射治疗计划中肿瘤床自动分割的方法 乳腺癌患者术后肿瘤床的分割 计算机视觉 乳腺癌 深度学习 深度学习模型 CT图像 未提及具体样本数量
回到顶部