本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
701 | 2024-11-21 |
Deep Lead Optimization: Leveraging Generative AI for Structural Modification
2024-Nov-20, Journal of the American Chemical Society
IF:14.4Q1
DOI:10.1021/jacs.4c11686
PMID:39499822
|
综述 | 本文综述了基于深度学习的分子生成模型在药物发现中的应用,特别是结构导向的先导优化方法 | 本文首次系统地将先导优化方法分类为目标导向和结构导向,并详细讨论了结构导向优化中的四个具体任务 | 本文主要集中在结构导向优化方法的综述,未涉及具体实验验证 | 探讨深度学习在药物发现中的应用,特别是先导优化过程中的结构导向方法 | 先导优化方法,特别是结构导向优化中的片段替换、连接子设计、骨架跳跃和侧链装饰 | 机器学习 | NA | 深度学习 | 生成对抗网络(GAN) | 分子结构数据 | NA |
702 | 2024-11-21 |
Combination of Transfer Learning and Chemprop Interpreter with Support of Deep Learning for the Energy Levels of Organic Photovoltaic Materials Prediction and Regulation
2024-Nov-20, ACS applied materials & interfaces
IF:8.3Q1
DOI:10.1021/acsami.4c15835
PMID:39564708
|
研究论文 | 本文提出了一种结合迁移学习和化学解释器的定向消息传递神经网络模型,用于有机光伏材料能级预测和可视化 | 本文的创新点在于结合了迁移学习和化学解释器,提高了有机光伏材料能级预测的准确性和可解释性 | 本文的局限性在于模型在小样本测试集上的表现较好,但在更大规模数据集上的表现尚需验证 | 本文的研究目的是开发一种高效且可解释的模型,用于预测和调控有机光伏材料的能级 | 本文的研究对象是有机光伏材料的能级及其分子结构 | 机器学习 | NA | 迁移学习 | 定向消息传递神经网络 | 分子结构数据 | 小测试集包含少量样本 |
703 | 2024-11-21 |
Performance of deep learning models in predicting the nugent score to diagnose bacterial vaginosis
2024-Nov-19, Microbiology spectrum
IF:3.7Q2
DOI:10.1128/spectrum.02344-24
PMID:39560430
|
研究论文 | 本研究评估了深度学习模型在预测Nugent评分以诊断细菌性阴道病中的表现 | 深度学习模型在预测Nugent评分方面表现出高准确性,优于实验室技术人员的平均准确率 | 需要在大规模上进行验证 | 提高细菌性阴道病诊断的一致性和准确性 | 1510张阴道涂片图像 | 计算机视觉 | 细菌性阴道病 | 深度学习 | 深度学习模型 | 图像 | 1510张阴道涂片图像,以及106张独立测试图像 |
704 | 2024-11-21 |
A Modified Transformer Network for Seizure Detection Using EEG Signals
2024-Nov-19, International journal of neural systems
IF:6.6Q1
DOI:10.1142/S0129065725500030
PMID:39560448
|
研究论文 | 本文提出了一种改进的Transformer网络用于癫痫发作检测,结合了Inception和Residual网络提取不同尺度的脑电图(EEG)信号特征,并通过Co-MixUp方法处理数据不平衡问题 | 本文提出的Inresformer网络结合了Inception和Residual网络,增强了特征表示能力,并通过改进的Feedforward层增强了模型的非线性表示 | NA | 提高癫痫发作检测的准确性和性能 | 脑电图(EEG)信号 | 机器学习 | NA | 离散小波变换(DWT) | Transformer网络 | 信号 | Bonn数据集和CHB-MIT数据集 |
705 | 2024-11-21 |
Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic Setting
2024-Nov-19, Clinical cancer research : an official journal of the American Association for Cancer Research
IF:10.0Q1
DOI:10.1158/1078-0432.CCR-24-2599
PMID:39561274
|
研究论文 | 本文探讨了三种深度学习策略在组织学样本上预测新辅助和转移性骨肉瘤生存结果的应用 | 本文创新性地使用深度卷积神经网络自动估计坏死与肿瘤的比例,并识别出特定的组织形态学生物标志物 | NA | 探索深度学习策略在新辅助和转移性骨肉瘤生存预测中的应用 | 骨肉瘤患者的组织学样本 | 数字病理学 | 骨癌 | 深度学习 | 深度卷积神经网络 | 图像 | 训练集来自纽约大学,外部验证集来自查尔斯大学 |
706 | 2024-11-21 |
Automated Single Cell Phenotyping of Time-of-Flight Secondary Ion Mass Spectrometry Tissue Images
2024-Nov-19, Journal of the American Society for Mass Spectrometry
IF:3.1Q1
DOI:10.1021/jasms.4c00328
PMID:39563098
|
研究论文 | 本文介绍了使用深度学习技术对时间飞行二次离子质谱组织图像进行自动单细胞表型分析的方法 | 开发了MIBIsight工作流程,利用深度学习技术处理包含数千个细胞的图像,生成易于理解的报告和图表 | NA | 旨在通过深度学习技术简化复杂数据集的分析,以便更好地理解细胞在疾病研究中的作用 | 时间飞行二次离子质谱组织图像中的单细胞表型 | 计算机视觉 | NA | 时间飞行二次离子质谱(ToF-SIMS) | 深度学习(DL) | 图像 | 数千个细胞 |
707 | 2024-11-21 |
Exploring protein natural diversity in environmental microbiomes with DeepMetagenome
2024-Nov-18, Cell reports methods
IF:4.3Q2
DOI:10.1016/j.crmeth.2024.100896
PMID:39515333
|
研究论文 | 本文介绍了一种基于深度学习的Python方法DeepMetagenome,用于探索环境微生物群中的蛋白质自然多样性 | DeepMetagenome通过深度学习模型从宏基因组/蛋白质组中检测蛋白质多样性,无需先验假设,并成功识别了高置信度的金属硫蛋白序列 | NA | 探索环境微生物群中的蛋白质自然多样性 | 金属硫蛋白及其他三种蛋白质家族的多样性 | 机器学习 | NA | 深度学习 | CNN, LSTM, Transformer | 序列数据 | 超过14600万编码特征的数据库 |
708 | 2024-11-21 |
Uncovering the predictive and immunomodulatory potential of transient receptor potential melastatin family-related CCNE1 in pan-cancer
2024-Nov-18, Molecular cancer
IF:27.7Q1
DOI:10.1186/s12943-024-02169-7
PMID:39551726
|
研究论文 | 研究探讨了TRPM家族成员CCNE1在泛癌中的预测和免疫调节潜力 | 首次创建了TRPM家族成员相关的TRPM-Score,并发现CCNE1作为泛癌中的重要生物标志物 | NA | 探索新的分子生物标志物以改进癌症治疗和早期检测 | TRPM家族成员及其在17种实体瘤中的作用 | 数字病理学 | 泛癌 | 机器学习和深度学习计算技术 | NA | NA | 17种实体瘤样本 |
709 | 2024-11-17 |
Correction: Multiparametric MRI based deep learning model for prediction of early recurrence of hepatocellular carcinoma after SR following TACE
2024-Nov-16, Journal of cancer research and clinical oncology
IF:2.7Q3
DOI:10.1007/s00432-024-06027-3
PMID:39547976
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
710 | 2024-11-21 |
Wind power prediction based on deep learning models: The case of Adama wind farm
2024-Nov-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e39579
PMID:39559238
|
研究论文 | 本文研究了基于深度学习模型的风力发电预测,以埃塞俄比亚的阿达玛风电场为例 | 本文首次为阿达玛风电场开发了基于深度学习的风力发电预测模型,并比较了LSTM、Bi-LSTM和GRU三种模型的性能 | 本文仅使用了阿达玛风电场的数据,未考虑其他风电场的数据,可能影响模型的泛化能力 | 开发一种准确可靠的风力发电预测模型,以帮助能源规划者和区域电力供应商计算电力生产和能源生成 | 阿达玛风电场的风力发电量 | 机器学习 | NA | 深度学习 | LSTM, Bi-LSTM, GRU | 时间序列数据 | 四年数据,共163,802行,每5分钟记录一次 |
711 | 2024-11-21 |
dsRNAPredictor-II: An improved predictor of identifying dsRNA and its silencing efficiency for Tribolium castaneum based on sequence length distribution
2024-Nov-09, Methods (San Diego, Calif.)
DOI:10.1016/j.ymeth.2024.11.007
PMID:39528092
|
研究论文 | 本文通过优化现有模型dsRNAPredictor,设计基于不同序列长度的子模型,建立了一个深度学习模型来预测dsRNA的沉默效率 | 本文通过设计基于不同序列长度的子模型,优化了现有模型dsRNAPredictor,提高了预测dsRNA沉默效率的性能和鲁棒性 | NA | 建立一个深度学习模型,帮助研究人员识别具有最高RNAi效率的dsRNA片段 | dsRNA的序列长度分布及其沉默效率 | 机器学习 | NA | NA | 卷积神经网络 | 序列 | 数据分为两组:130-399 bp和400-616 bp长的序列 |
712 | 2024-11-21 |
Artificial Intelligence and the Future of Communication Sciences and Disorders: A Bibliometric and Visualization Analysis
2024-Nov-07, Journal of speech, language, and hearing research : JSLHR
DOI:10.1044/2024_JSLHR-24-00157
PMID:39418583
|
研究论文 | 本文通过文献计量学分析和可视化方法,全面概述了人工智能在沟通科学与障碍研究中的应用 | 本文首次系统性地分析了人工智能在沟通科学与障碍领域的研究趋势和热点,揭示了该领域应用AI的现状和未来发展方向 | 本文主要依赖于文献计量学方法,可能无法全面反映所有相关研究的细节和深度 | 旨在为研究人员、开发者和专业人士提供一个全面的概述,帮助理解AI在沟通科学与障碍研究中的演变 | 主要研究了自闭症、失语症、构音障碍、帕金森病和阿尔茨海默病等沟通障碍 | 机器学习 | NA | 文献计量学分析 | 支持向量机、卷积神经网络、隐马尔可夫模型 | 文献数据 | 15,035篇出版物,其中4,375篇符合纳入标准 |
713 | 2024-10-15 |
Deciphering protective genomic factors of tumor development in pediatric Down syndrome via deep learning approach to whole genome and RNA sequencing
2024-Nov, Cancer communications (London, England)
DOI:10.1002/cac2.12612
PMID:39387321
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
714 | 2024-11-21 |
Accelerating Brain MR Imaging With Multisequence and Convolutional Neural Networks
2024-Nov, Brain and behavior
IF:2.6Q3
DOI:10.1002/brb3.70163
PMID:39552110
|
研究论文 | 研究使用深度学习技术加速脑部MRI成像过程,通过多序列和卷积神经网络重建图像,同时保持图像质量 | 利用深度学习技术从不同MRI序列中提取共同信息,减少最耗时的序列扫描时间,同时保持图像质量 | 研究仅限于T1-FLAIR、T2-FLAIR和T2WI序列,未涵盖所有可能的MRI序列 | 探讨深度学习技术是否能通过利用不同MRI序列的共同信息来减少扫描时间并保持图像质量 | 脑部MRI图像,包括T1-FLAIR、T2-FLAIR和T2WI序列 | 计算机视觉 | NA | 深度学习 | 卷积神经网络 | 图像 | 217名患者和105名健康受试者的脑部MRI原始数据 |
715 | 2024-11-21 |
Deep learning model for automated diagnosis of moyamoya disease based on magnetic resonance angiography
2024-Nov, EClinicalMedicine
IF:9.6Q1
DOI:10.1016/j.eclinm.2024.102888
PMID:39559186
|
研究论文 | 本研究探讨了基于深度学习的卷积神经网络(CNN)在磁共振血管造影(MRA)图像上自动识别烟雾病(MMD)的潜力 | 本研究首次使用DenseNet-121模型在MRA图像上实现了MMD的自动诊断,并展示了其与经验丰富的放射科医生相当的诊断能力 | 本研究为回顾性研究,样本主要来自中国的一个机构,外部验证集较小,可能影响模型的泛化能力 | 探索基于深度学习的卷积神经网络在MRA图像上自动诊断烟雾病的可能性 | 烟雾病(MMD)、动脉粥样硬化疾病(ASD)和正常对照(NC)的MRA图像 | 计算机视觉 | 脑血管疾病 | 卷积神经网络(CNN) | DenseNet-121 | 图像 | 600名参与者(200名MMD、200名ASD和200名NC)用于训练,60名参与者用于外部验证 |
716 | 2024-11-21 |
Deep Learning Algorithms for Breast Cancer Detection in a UK Screening Cohort: As Stand-alone Readers and Combined with Human Readers
2024-Nov, Radiology
IF:12.1Q1
DOI:10.1148/radiol.233147
PMID:39560480
|
研究论文 | 本文研究了三种深度学习算法在英国乳腺癌筛查队列中的表现,评估了它们作为独立读片者和与人类读片者结合使用时的性能 | 本文的创新点在于验证了三种深度学习算法在独立使用和与人类读片者结合使用时的非劣效性,特别是在敏感性和特异性方面 | 本文的局限性在于仅在两个英国站点收集的数据上进行了验证,且仅使用了两种设备供应商的机器 | 本文的研究目的是在外部独立数据集中验证三种深度学习算法作为乳腺X线筛查读片者的性能 | 本文的研究对象是三种商业深度学习算法(DL-1, DL-2, DL-3)在乳腺癌筛查中的应用 | 计算机视觉 | 乳腺癌 | 深度学习 | 深度学习算法 | 图像 | 共26,722例病例,包括332例筛查发现、174例间隔期和254例下一轮癌症 |
717 | 2024-11-20 |
[Investigation of the impact of the deep learning based CT fractional flow reserve on clinical decision-making and long-term prognosis in patients with obstructive coronary heart disease]
2024-Nov-24, Zhonghua xin xue guan bing za zhi
|
研究论文 | 研究深度学习CT分数流量储备(CT-FFR)对阻塞性冠心病患者临床决策和长期预后的影响 | 深度学习CT-FFR作为临床决策和长期预后评估的辅助工具 | 单中心回顾性队列研究,样本量有限 | 探讨深度学习CT-FFR对阻塞性冠心病患者临床决策和长期预后的影响 | 阻塞性冠心病患者 | 机器学习 | 心血管疾病 | 深度学习 | NA | 图像 | 622名患者,年龄61岁(54, 66),其中407名(65.4%)为男性 |
718 | 2024-11-20 |
Empirical Modal Decomposition Combined with Deep Learning for Photoacoustic Spectroscopy Detection of Mixture Gas Concentrations
2024-Nov-19, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c04479
PMID:39506893
|
研究论文 | 本文提出了一种基于经验模态分解(EMD)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的多组分气体分析方法,用于从重叠的波长调制光谱中提取混合气体的精确浓度 | 结合EMD、CNN和LSTM网络,能够从重叠的光谱中准确提取混合气体的浓度 | NA | 提高光声光谱技术在多组分气体分析中的测量精度 | 乙炔和氨气的混合气体浓度 | 机器学习 | NA | 光声光谱技术 | CNN和LSTM | 光谱数据 | 25种不同浓度的乙炔-氨气混合物,乙炔浓度范围为2.5至7.5 ppm,氨气浓度范围为12.5至37.5 ppm |
719 | 2024-11-20 |
Deep learning-based automatic bleeding recognition during liver resection in laparoscopic hepatectomy
2024-Nov-18, Surgical endoscopy
DOI:10.1007/s00464-024-11331-7
PMID:39557646
|
研究论文 | 本文开发了一种基于深度学习的自动识别腹腔镜肝切除术中出血区域的模型 | 首次报道了用于检测和停止腹腔镜肝切除术中出血的深度学习模型 | 研究为回顾性可行性研究,样本量较小 | 开发一种自动识别腹腔镜肝切除术中出血区域的深度学习模型 | 腹腔镜肝切除术中的出血区域 | 计算机视觉 | NA | 卷积神经网络算法 | CNN | 图像 | 2203张标注图像,来自44个腹腔镜肝切除术视频 |
720 | 2024-11-20 |
A Comparison of Deep Learning vs. Dental Implantologists in Cone-Beam Computed Tomography-Based Bone Quality Classification
2024-Nov-18, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01317-1
PMID:39557735
|
研究论文 | 比较深度学习模型与牙种植专家在基于锥束计算机断层扫描(CBCT)的骨质量分类中的表现 | 使用Inception-ResNet-v2深度学习模型在骨质量分类中表现优于牙种植专家和住院医师 | 研究仅限于CBCT图像和L&Z分类,未涉及其他骨质量评估方法 | 比较深度学习模型与人类评估者在骨质量评估中的表现 | CBCT图像中的骨质量分类 | 计算机视觉 | NA | 深度学习 | Inception-ResNet-v2 | 图像 | 1100个CBCT横截面切片 |