本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
141 | 2025-01-16 |
Early Detection of Macular Atrophy Automated Through 2D and 3D Unet Deep Learning
2024-Nov-25, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering11121191
PMID:39768009
|
研究论文 | 本文开发了一种基于2D和3D Unet架构的自动化方法,用于通过光学相干断层扫描(OCT)早期检测黄斑萎缩(MA) | 结合2D和3D Unet架构,自动化检测黄斑萎缩,性能优于人工评分 | NA | 开发一种自动化工具,用于早期检测黄斑萎缩,以支持临床决策 | 黄斑萎缩(MA)患者 | 计算机视觉 | 老年性黄斑变性 | 光学相干断层扫描(OCT) | 2D和3D Unet | 图像 | 125只眼睛(89名患者)的1241个OCT体积数据 |
142 | 2025-01-16 |
LVGG-IE: A Novel Lightweight VGG-Based Image Encryption Scheme
2024-Nov-23, Entropy (Basel, Switzerland)
DOI:10.3390/e26121013
PMID:39766642
|
研究论文 | 本文提出了一种基于轻量级VGG(LVGG)的新型图像加密方案LVGG-IE,旨在提高图像加密的安全性和效率 | 提出了一种基于轻量级VGG网络的图像加密方案,结合混沌系统和动态S-box,增强了加密的安全性和效率 | 深度学习与图像加密的结合仍处于初期阶段,存在一些不足 | 开发一种高安全性和高效率的图像加密方案,以保护图像安全 | 图像加密 | 计算机视觉 | NA | 混沌系统、动态S-box、卷积神经网络 | VGG | 图像 | NA |
143 | 2025-01-16 |
Deep learning in integrating spatial transcriptomics with other modalities
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae719
PMID:39800876
|
综述 | 本文系统回顾了深度学习在整合空间转录组学与其他模态数据中的应用 | 首次全面综述了深度学习在整合空间转录组学与其他模态数据中的方法,并详细分类了这些方法 | 未进行实验验证,仅进行了文献综述 | 促进开发更全面的多模态信息计算方法 | 空间转录组学数据与其他模态数据的整合方法 | 生物信息学 | NA | 深度学习 | NA | 空间转录组学数据、组织学图像、染色质图像、单细胞RNA测序数据 | NA |
144 | 2025-01-16 |
DD-PRiSM: a deep learning framework for decomposition and prediction of synergistic drug combinations
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae717
PMID:39800875
|
研究论文 | 本文介绍了一种名为DD-PRiSM的深度学习框架,用于分解和预测协同药物组合的效果 | DD-PRiSM通过分解药物组合的协同效应和单药效应,能够预测组合疗法的效果,并成功识别出具有协同作用的药物对 | NA | 解决预测复杂疾病(特别是癌症)组合疗法效果和安全性的挑战 | 药物组合及其在癌症治疗中的效果 | 机器学习 | 癌症 | 深度学习 | 深度学习模型(包括单药模型和组合疗法模型) | 药物结构数据、细胞系基因表达数据 | 未明确提及具体样本数量 |
145 | 2025-01-16 |
Performance of Risk Models for Antimicrobial Resistance in Adult Patients With Sepsis
2024-Nov-04, JAMA network open
IF:10.5Q1
|
研究论文 | 本研究评估了患者病例组合和当地耐药率对社区发病和医院发病的脓毒症患者中耐药革兰阴性杆菌(GNB)感染风险分层模型性能的影响 | 研究揭示了模型性能的差异与抗菌药物耐药率的相关性,而非患者病例组合,提示在使用通用模型预测脓毒症中耐药GNB病因时需要谨慎 | 研究为回顾性队列研究,可能受到数据收集和记录偏差的影响 | 评估患者病例组合和当地耐药率对脓毒症患者中耐药GNB感染风险分层模型性能的影响 | 成年脓毒症患者 | 医疗数据分析 | 脓毒症 | 深度学习模型 | 深度学习 | 临床数据 | 39,893名患者,85,238次脓毒症发作 |
146 | 2025-01-15 |
Deep learning segmentation architectures for automatic detection of pancreatic ductal adenocarcinoma in EUS-guided fine-needle biopsy samples based on whole-slide imaging
2024 Nov-Dec, Endoscopic ultrasound
IF:4.4Q1
DOI:10.1097/eus.0000000000000094
PMID:39802107
|
研究论文 | 本研究比较了7种U-Net架构变体在两种不同数据集上的性能,用于基于全切片成像的胰腺导管腺癌自动检测 | 首次评估了多种U-Net架构变体在胰腺导管腺癌全切片图像分割中的应用,并展示了Inception U-Net架构的高分割准确性 | 研究仅基于两个医疗中心的有限样本量(31和33张全切片图像),可能影响模型的泛化能力 | 探索深度学习架构在胰腺导管腺癌全切片图像分割中的有效性 | EUS引导的细针活检样本 | 数字病理学 | 胰腺导管腺癌 | 全切片成像 | U-Net及其变体(如Inception U-Net) | 图像 | 64张全切片图像(来自两个医疗中心) |
147 | 2025-01-15 |
Functional imaging derived ADHD biotypes based on deep clustering: a study on personalized medication therapy guidance
2024-Nov, EClinicalMedicine
IF:9.6Q1
DOI:10.1016/j.eclinm.2024.102876
PMID:39763511
|
研究论文 | 本文提出了一种基于图卷积网络的生物亚型检测方法(GCN-BSD),用于识别注意力缺陷多动障碍(ADHD)的生物亚型,以指导个性化药物治疗 | 使用功能网络连接性(FNC)和非成像表型数据,结合深度学习算法,首次提出了基于成像驱动的ADHD生物亚型分类方法 | 研究样本主要来自特定数据集,可能限制了结果的普适性 | 通过神经影像学标记物识别ADHD生物亚型,以指导个性化药物治疗 | ADHD患者 | 机器学习 | 注意力缺陷多动障碍(ADHD) | 功能网络连接性(FNC)分析 | 图卷积网络(GCN) | 功能成像数据和非成像表型数据 | 1069名ADHD患者(ABCD研究)和130名ADHD青少年(北京大学第六医院验证数据集) |
148 | 2025-01-13 |
LOGOWheat: deep learning-based prediction of regulatory effects for noncoding variants in wheats
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae705
PMID:39789857
|
研究论文 | 本文介绍了一种基于深度学习的工具LOGOWheat,用于预测小麦中非编码变异的调控效应 | LOGOWheat采用自注意力机制的预训练语言模型,结合表观基因组数据,有效预测小麦基因组序列中的调控代码 | 未明确提及具体局限性 | 研究目的是开发一种工具,用于预测小麦中非编码变异的调控效应 | 研究对象为小麦基因组中的非编码变异 | 自然语言处理 | NA | 深度学习 | 自注意力机制的预训练语言模型 | 基因组序列数据、表观基因组数据 | 未明确提及具体样本数量 |
149 | 2025-01-12 |
Automated denoising software for calcium imaging signals using deep learning
2024-Nov-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e39574
PMID:39524741
|
研究论文 | 本文介绍了一种名为CalDenoise的自动化软件,该软件利用深度学习和图像处理技术去除钙成像信号中的噪声 | 开发了CalDenoise软件,结合图像处理和生成对抗网络(GAN)模型,有效去除钙时空图(STMaps)中的复杂噪声模式 | 未提及具体样本量或实验验证的详细结果 | 提高钙成像信号分析的准确性,去除噪声以精确分析钙数据集 | 钙时空图(STMaps)中的噪声 | 计算机视觉 | NA | 深度学习,图像处理 | GAN | 图像 | NA |
150 | 2025-01-12 |
Comparison of Three Computational Tools for the Prediction of RNA Tertiary Structures
2024-Nov-08, Non-coding RNA
IF:3.6Q2
DOI:10.3390/ncrna10060055
PMID:39585047
|
研究论文 | 本研究比较了三种计算工具(RNAComposer、Rosetta FARFAR2和AlphaFold 3)在预测RNA三级结构方面的效用 | 首次将AlphaFold 3应用于RNA三级结构预测,并展示了其在处理常见转录后修饰方面的优势 | 三种工具在预测人类前微小RNA和较大BioRNA分子的远端环结构时存在显著差异,且这些RNA的三级结构尚未通过实验表征 | 比较不同计算工具在预测RNA三级结构方面的性能 | 非编码RNA(ncRNAs),包括小干扰RNA药物nedosiran和新型生物工程RNA(BioRNA)分子 | 生物信息学 | NA | 计算预测 | AlphaFold 3, RNAComposer, Rosetta FARFAR2 | RNA序列 | 多种RNA分子,包括nedosiran和BioRNA分子 |
151 | 2025-01-07 |
Predicting phage-host interactions via feature augmentation and regional graph convolution
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae672
PMID:39756070
|
研究论文 | 本文提出了一种名为MI-RGC的新方法,通过特征增强和区域图卷积来预测噬菌体-宿主相互作用(PHIs) | MI-RGC引入了互信息进行特征增强,并采用区域图卷积来学习有意义的表示,从而克服了现有深度学习方法在PHIs预测中的局限性 | 尽管MI-RGC在PHIs预测任务中表现出色,但其性能可能仍受到数据稀疏性的影响 | 开发一种更有效的预测噬菌体-宿主相互作用的方法,以支持噬菌体疗法的发展 | 噬菌体和宿主之间的相互作用 | 机器学习 | 抗生素耐药性 | 深度学习 | 区域图卷积模型 | 序列信息 | 三个基准数据集 |
152 | 2025-01-07 |
Multimodal deep learning approaches for precision oncology: a comprehensive review
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae699
PMID:39757116
|
综述 | 本文综述了多模态深度学习在精准肿瘤学中的应用,基于对651篇文献的广泛调查 | 提供了多模态深度学习在肿瘤分割、检测、诊断、预后、治疗选择和疗效监测中的全面应用概述,并提出了未来研究方向 | 当前方法存在局限性,未来研究需要解决这些挑战 | 推动多模态深度学习在精准肿瘤学中的应用 | 肿瘤学研究中的多模态数据 | 机器学习 | 癌症 | 深度学习 | 多模态深度学习 | 多模态数据 | 651篇文献 |
153 | 2025-01-06 |
A transformer-based deep learning survival prediction model and an explainable XGBoost anti-PD-1/PD-L1 outcome prediction model based on the cGAS-STING-centered pathways in hepatocellular carcinoma
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae686
PMID:39749665
|
研究论文 | 本文开发了基于cGAS-STING通路的深度学习生存预测模型和可解释的XGBoost抗PD-1/PD-L1结果预测模型,用于肝细胞癌(HCC)的研究 | 创新点在于结合cGAS-STING通路,构建了Transformer生存模型和XGBoost免疫治疗结果预测模型,并提供了模型的开源代码 | 模型的泛化能力需进一步验证,且样本量可能限制了模型的普适性 | 开发预测肝细胞癌患者生存风险和抗PD-1/PD-L1治疗结果的模型 | 肝细胞癌(HCC)患者 | 机器学习 | 肝细胞癌 | SHAP算法 | Transformer, XGBoost | 基因表达数据 | 多个HCC队列(TCGA-LIHC、ICGC-LIRI-JP、GSE144269等) |
154 | 2025-01-06 |
Towards simplified graph neural networks for identifying cancer driver genes in heterophilic networks
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae691
PMID:39751645
|
研究论文 | 本文提出了一种简化的图神经网络(SGCD),用于在异质性网络中识别癌症驱动基因 | SGCD模型结合了表示分离的图卷积神经网络和双模态特征提取器,解决了现有方法未考虑生物网络异质性和特征混淆的问题 | NA | 提高在异质性网络中识别癌症驱动基因的模型性能 | 癌症驱动基因 | 机器学习 | 癌症 | 图深度学习 | 图卷积神经网络(GCN) | 多组学数据和生物网络 | NA |
155 | 2025-01-05 |
Computational design of CDK1 inhibitors with enhanced target affinity and drug-likeness using deep-learning framework
2024-Nov-30, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e40345
PMID:39748968
|
研究论文 | 本研究利用深度学习技术,特别是带有长短期记忆(LSTM)的循环神经网络,生成潜在的CDK1抑制剂,并通过分子对接、分子性质评估和分子动力学模拟来识别最有前景的候选药物 | 利用深度学习框架生成具有增强靶点亲和力和药物相似性的CDK1抑制剂,显著提高了结合亲和力和药物相似性 | 需要广泛的实验验证才能将这些生成的配体推进到药物开发的后续阶段 | 开发具有增强靶点亲和力和药物相似性的CDK1抑制剂 | CDK1抑制剂 | 机器学习 | 癌症 | 深度学习、分子对接、分子动力学模拟 | LSTM | 分子数据 | NA |
156 | 2025-01-05 |
Machine learning-enabled virtual screening indicates the anti-tuberculosis activity of aldoxorubicin and quarfloxin with verification by molecular docking, molecular dynamics simulations, and biological evaluations
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae696
PMID:39737570
|
研究论文 | 本研究开发了一种结合机器学习和深度学习模型的虚拟筛选工作流程,用于筛选抗结核药物,并通过分子对接、分子动力学模拟和生物评估验证了aldoxorubicin和quarfloxin的抗结核活性 | 结合多种机器学习和深度学习模型进行虚拟筛选,成功重新定位两种药物(aldoxorubicin和quarfloxin)作为抗结核候选药物 | 研究中仅筛选了来自DrugBank数据库的11,576种化合物,可能未涵盖所有潜在药物 | 加速抗结核药物的发现,通过计算方法重新定位临床批准或研究中的药物用于结核病治疗 | 结核分枝杆菌(Mtb) | 机器学习 | 结核病 | 虚拟筛选、分子对接、分子动力学模拟、表面等离子体共振实验 | 机器学习和深度学习模型 | 化合物数据 | 11,576种化合物,15种筛选出的潜在化合物 |
157 | 2025-01-05 |
Impact of retraining and data partitions on the generalizability of a deep learning model in the task of COVID-19 classification on chest radiographs
2024-Nov, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.11.6.064503
PMID:39734609
|
研究论文 | 本研究探讨了不同模型重训练方案和数据划分对COVID-19胸部X光片分类任务中模型性能的影响,特别是在模型泛化性方面 | 通过四种不同的策略(重训练、微调、L2正则化和数据重新划分)来探索模型在不同数据集上的泛化性能,揭示了数据划分对模型性能的显著影响 | 研究仅基于同一机构的两组数据集,可能无法完全代表其他数据集或实际应用场景中的表现 | 研究目的是评估不同模型重训练方案和数据划分对COVID-19胸部X光片分类任务中模型泛化性的影响 | 胸部X光片(CXRs) | 计算机视觉 | COVID-19 | 深度学习(DL) | 深度学习模型 | 图像 | Set A(9860名患者)和Set B(5893名患者) |
158 | 2025-01-04 |
An ultrasonography of thyroid nodules dataset with pathological diagnosis annotation for deep learning
2024-Nov-23, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-024-04156-5
PMID:39580501
|
研究论文 | 本文介绍了一个带有病理诊断注释的甲状腺结节超声图像数据集,旨在开发深度学习算法直接从甲状腺超声图像推断组织学状态 | 提供了一个大型的甲状腺超声图像数据集,每个病例都有病理诊断注释,用于直接训练深度学习模型,而不是依赖TI-RADS报告作为图像标签 | 数据集来自两个回顾性队列,可能存在选择偏差 | 开发深度学习算法直接从甲状腺超声图像推断组织学状态 | 甲状腺结节 | 数字病理 | 甲状腺疾病 | 超声成像 | 深度学习模型 | 图像 | 842个病例的8508张超声图像 |
159 | 2025-01-04 |
A 3D dental model dataset with pre/post-orthodontic treatment for automatic tooth alignment
2024-Nov-23, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-024-04138-7
PMID:39580508
|
研究论文 | 本文提出了首个公开的3D正畸牙科数据集,包含1060对治疗前后的牙科模型,旨在利用深度学习方法自动实现牙齿对齐 | 首次公开包含治疗前后3D牙科模型的数据集,为智能正畸解决方案的发展提供了基础 | 数据集虽然多样,但仍可能无法涵盖所有类型的错颌畸形 | 提高临床正畸治疗中目标牙齿位置设计的效率和质量 | 435名患者的1060对治疗前后的3D牙科模型 | 计算机视觉 | NA | 深度学习 | NA | 3D模型 | 435名患者的1060对治疗前后的3D牙科模型 |
160 | 2025-01-04 |
Multimodal Artificial Intelligence in Medicine
2024-Nov-01, Kidney360
IF:3.2Q1
DOI:10.34067/KID.0000000000000556
PMID:39167446
|
研究论文 | 本文探讨了多模态人工智能在医学中的应用及其挑战 | 提出了多模态转换器模型在医疗保健中的有效应用,能够处理和解释多种数据形式,如文本、图像和结构化数据 | 集成这些先进的人工智能模型需要考虑伴随的伦理和环境挑战 | 研究多模态人工智能在医学诊断和治疗中的应用 | 医疗保健中的多模态数据 | 自然语言处理 | NA | 多模态深度学习 | transformer | 文本、图像、结构化数据 | NA |