本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
241 | 2025-03-02 |
RETRACTED ARTICLE: Sustainable strategy for online physical education teaching using ResNet34 and big data
2024-12, Soft computing
IF:3.1Q2
DOI:10.1007/s00500-023-08524-y
PMID:37362298
|
研究论文 | 本文提出了一种具有可持续发展特性的在线教学支持系统,利用ResNet34深度学习图像识别算法实时分析和纠正学生在体操、舞蹈、篮球等运动中的动作 | 通过将注意力机制模块与原始ResNet34结合,提高了系统的检测精度,并且系统能够随着新运动类别的出现扩展数据集,保持实时更新 | NA | 开发一种可持续的在线体育教学支持系统,以改善虚拟体育教学中的学生动作纠正 | 在线体育教学中的学生动作 | 计算机视觉 | NA | 深度学习 | ResNet34 | 图像 | NA |
242 | 2025-03-02 |
Deep learning models using intracranial and scalp EEG for predicting sedation level during emergence from anaesthesia
2024-Dec, BJA open
DOI:10.1016/j.bjao.2024.100347
PMID:40018289
|
研究论文 | 本研究探讨了使用颅内和头皮脑电图(EEG)预测麻醉苏醒期间镇静水平的深度学习模型 | 结合颅内和头皮EEG数据,利用深度学习模型预测镇静水平,显著提高了预测准确性 | 样本量较小,仅涉及7名患者,且验证集仅包含5名患者的头皮EEG数据 | 研究目的是通过EEG监测预测麻醉苏醒期间的镇静水平,以提高麻醉管理的安全性 | 研究对象为接受颅内电极植入手术的7名难治性癫痫患者,以及5名仅提供头皮EEG数据的患者 | 机器学习 | 癫痫 | EEG | 深度学习模型 | EEG数据 | 7名患者(颅内和头皮EEG数据),5名患者(仅头皮EEG数据) |
243 | 2025-02-22 |
Augmenting cybersecurity through attention based stacked autoencoder with optimization algorithm for detection and mitigation of attacks on IoT assisted networks
2024-Dec-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81162-y
PMID:39730515
|
研究论文 | 本文提出了一种基于注意力机制的堆叠自编码器与鹈鹕优化算法相结合的网络安全方法(CASAE-POADMA),用于检测和缓解物联网(IoT)辅助网络中的攻击 | 提出了结合注意力机制的堆叠自编码器(ASAE)和鹈鹕优化算法(POA)的新型网络安全方法,显著提高了攻击检测的准确性 | 方法仅在基准数据库上进行了验证,未在实际IoT网络环境中进行大规模测试 | 提高物联网网络的安全性,检测和缓解网络攻击 | 物联网(IoT)辅助网络 | 网络安全 | NA | 机器学习(ML)、深度学习(DL) | 注意力机制的堆叠自编码器(ASAE) | 网络数据 | 基准数据库 |
244 | 2025-02-21 |
Deep learning enhanced transmembranous electromyography in the diagnosis of sleep apnea
2024-Dec-31, BMC neuroscience
IF:2.4Q3
DOI:10.1186/s12868-024-00913-9
PMID:39741274
|
研究论文 | 本文探讨了使用深度学习增强的跨膜肌电图(tmEMG)在睡眠呼吸暂停诊断中的应用 | 本文创新性地使用带有注意力机制的深度学习模型(transformer)来建模tmEMG数据,以区分来自对照组、神经源性患者和睡眠呼吸暂停患者的肌电信号 | 研究数据集相对较小,可能影响模型的泛化能力 | 研究目的是通过深度学习技术提高睡眠呼吸暂停的诊断准确性 | 研究对象包括健康对照组、中度至重度阻塞性睡眠呼吸暂停(OSA)患者和肌萎缩侧索硬化症(ALS)患者 | 机器学习 | 睡眠呼吸暂停 | 跨膜肌电图(tmEMG) | transformer | 肌电信号 | 177例经口肌电图记录,包括6名健康对照、5名中度至重度OSA患者和5名ALS患者 |
245 | 2025-02-21 |
TPepPro: a deep learning model for predicting peptide-protein interactions
2024-12-26, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae708
PMID:39585721
|
研究论文 | 本文提出了一种基于Transformer的深度学习模型TPepPro,用于预测肽-蛋白质相互作用 | TPepPro结合了局部蛋白质序列特征提取和全局蛋白质结构特征提取的策略,并优化了结构特征神经网络的架构,显著减少了计算资源的需求 | NA | 开发一种高效预测肽-蛋白质相互作用的模型,以支持氨基酸药物的应用 | 肽-蛋白质相互作用 | 机器学习 | NA | 深度学习 | Transformer | 序列和结构特征 | 19,187对肽-蛋白质复合物 |
246 | 2025-02-21 |
Ligand identification in CryoEM and X-ray maps using deep learning
2024-12-26, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae749
PMID:39700427
|
研究论文 | 本文提出了一种基于深度学习的配体识别方法,适用于X射线衍射和冷冻电镜密度图 | 首次将深度学习应用于冷冻电镜密度图的配体识别,并展示了其在X射线晶体学中的同等效果 | 冷冻电镜图的标准化和配体质量评估存在挑战 | 提高结构导向药物设计中的配体识别准确性 | X射线衍射和冷冻电镜密度图中的小分子配体 | 计算机视觉 | NA | 深度学习 | 3D点云处理模型 | 3D密度图 | NA |
247 | 2025-02-21 |
Ligand Identification in CryoEM and X-ray Maps Using Deep Learning
2024-Dec-09, bioRxiv : the preprint server for biology
DOI:10.1101/2024.08.27.610022
PMID:39257821
|
研究论文 | 本文提出了一种基于深度学习的配体识别方法,适用于X射线衍射和冷冻电镜(cryoEM)密度图 | 首次将深度学习应用于冷冻电镜密度图的配体识别,并展示了其与现有X射线晶体学机器学习方法相当的性能 | 冷冻电镜图谱的标准化和配体质量评估仍存在挑战 | 提高结构导向药物设计中的配体识别准确性 | X射线衍射和冷冻电镜密度图中的小分子配体 | 计算机视觉 | NA | 深度学习 | 3D点云处理模型 | 3D密度图 | NA |
248 | 2025-02-21 |
3D-BCLAM: A Lightweight Neurodynamic Model for Assessing Student Learning Effectiveness
2024-Dec-09, Sensors (Basel, Switzerland)
DOI:10.3390/s24237856
PMID:39686393
|
研究论文 | 本文提出了一种轻量级的神经动力学模型3D-BCLAM,用于评估学生的学习效果 | 创新性地结合了双向卷积长短期记忆(BCL)和动态注意力机制,以极低的计算成本高效捕捉时间序列中的情感动态变化 | NA | 评估学生的学习效果,深入理解学习过程,准确诊断学习障碍,并制定有效的教学策略 | 学生的学习效果 | 机器学习 | NA | NA | 3D-BCLAM(结合双向卷积长短期记忆和动态注意力机制) | 时间序列数据 | NA |
249 | 2025-02-21 |
Deep learning in image segmentation for cancer
2024-Dec, Journal of medical radiation sciences
IF:1.8Q3
DOI:10.1002/jmrs.839
PMID:39503190
|
研究论文 | 本文探讨了深度学习在癌症成像中的作用,特别是其在自动图像分割中的应用 | 展示了基于U-Net和卷积神经网络的架构在CT扫描中的身体成分分析和MRI图像中的直肠肿瘤分割中的速度和准确性提升 | 需要进一步研究以解决不同成像系统间图像质量差异的问题 | 研究深度学习在癌症图像分割中的应用 | CT扫描和MRI图像 | 计算机视觉 | 癌症 | 深度学习 | U-Net, CNN | 图像 | NA |
250 | 2025-02-21 |
Making sense of missense: challenges and opportunities in variant pathogenicity prediction
2024-Dec-01, Disease models & mechanisms
IF:4.0Q1
DOI:10.1242/dmm.052218
PMID:39676521
|
研究论文 | 本文讨论了变异致病性预测的计算工具及其在临床变异解释中的应用 | 介绍了不依赖已知变异分类进行训练的模型,如AlphaMissense,这些模型能克服当前临床数据库的偏差,并更好地泛化到新的未分类变异 | AlphaMissense作为一个大型深度学习模型,缺乏可解释性,不评估变异的功能影响,且提供的致病性评分不是疾病特异性的 | 提高变异解释计算工具的可解释性和精确性,以推进临床遗传学的发展 | 变异致病性预测模型 | 机器学习 | NA | 深度学习 | AlphaMissense, AlphaFold | 功能数据和临床数据 | NA |
251 | 2025-02-20 |
Quantitative analysis of the dexamethasone side effect on human-derived young and aged skeletal muscle by myotube and nuclei segmentation using deep learning
2024-12-26, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae658
PMID:39752317
|
研究论文 | 本文提出了一种使用深度学习和后处理技术对人类来源的年轻和老年骨骼肌中地塞米松副作用进行定量分析的新方法 | 通过同时进行肌管和细胞核分割,结合后处理技术,提高了分析的准确性和一致性 | NA | 定量分析地塞米松对人类来源的年轻和老年骨骼肌的副作用 | 人类来源的年轻和老年骨骼肌细胞 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
252 | 2024-11-23 |
Large language modeling and deep learning shed light on RNA structure prediction
2024-Dec, Nature methods
IF:36.1Q1
DOI:10.1038/s41592-024-02488-z
PMID:39572717
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
253 | 2025-02-19 |
A comprehensive dataset of rice field weed detection from Bangladesh
2024-Dec, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.110981
PMID:39957731
|
研究论文 | 本文介绍了一个包含3632张高分辨率RGB图像的全面数据集,用于检测孟加拉国稻田中的杂草 | 开发了一个包含11种常见稻田杂草的高分辨率图像数据集,适用于全球不同农业环境 | 数据集主要来自孟加拉国,可能在其他地区的适用性有限 | 通过提供高质量数据集,支持深度学习与机器学习在稻田杂草检测中的应用 | 稻田中的杂草 | 计算机视觉 | NA | NA | NA | 图像 | 3632张高分辨率RGB图像 |
254 | 2025-02-19 |
Mine 4.0-mineCareerDB: A high-resolution image dataset for mining career segmentation and object detection
2024-Dec, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.110976
PMID:39957730
|
研究论文 | 本文介绍了Mine 4.0-MineCareerDB,一个公开的高分辨率图像数据集,专门用于分析采矿职业 | 提供了一个专门为采矿行业设计的高分辨率图像数据集,支持计算机视觉应用 | 数据集仅包含373张图像,可能不足以覆盖所有采矿场景 | 推动计算机视觉在采矿行业中的应用,如设备识别、安全分析和自动化研究 | 采矿操作和活动的图像 | 计算机视觉 | NA | 无人机摄影 | NA | 图像 | 373张采矿活动图像 |
255 | 2025-02-19 |
A dataset of mammography images with area-based breast density values, breast area, and dense tissue segmentation masks
2024-Dec, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.110980
PMID:39957743
|
研究论文 | 本文介绍了一个新的数据集,旨在推动自动乳腺密度估计的研究,这是乳腺X光片解读中的一个关键因素 | 该数据集基于公开的VinDr-Mammo数据集,提供了745张乳腺X光片图像及专家放射科医生对整个乳房和致密组织区域的注释,为自动乳腺密度分析提供了新的资源 | 数据集的样本量相对较小,可能限制了模型的泛化能力 | 推动自动乳腺密度估计的研究,以改进乳腺癌筛查 | 乳腺X光片图像 | 数字病理学 | 乳腺癌 | 乳腺X光摄影 | 深度学习模型 | 图像 | 745张乳腺X光片图像 |
256 | 2025-02-16 |
Avoiding missed opportunities in AI for radiology
2024-Dec, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-024-03295-9
PMID:39585545
|
评论 | 本文探讨了人工智能(AI)在放射学中的应用,强调了避免错失AI潜力的重要性 | 提出了在放射学中避免错失AI应用机会的策略,并强调了AI在临床和财务上的双重益处 | 文章主要基于作者所在医疗系统的经验,可能不具有普遍适用性 | 探讨如何充分利用AI在放射学中的潜力,以提升医疗智慧和患者护理 | 放射学中的AI应用 | 机器学习 | NA | 深度学习 | 人工神经网络 | NA | NA |
257 | 2025-02-14 |
Ontologies in modelling and analysing of big genetic data
2024-Dec, Vavilovskii zhurnal genetiki i selektsii
IF:0.9Q3
DOI:10.18699/vjgb-24-101
PMID:39944813
|
研究论文 | 本文探讨了基于本体论的新方法,用于系统化和有效利用生物信息学和生物医学领域积累的大量实验数据,包括自动化语义整合异构数据、创建大型知识库和基于深度学习的自解释方法 | 提出了基于本体论的深度学习方法,如Deep GONet和ONN4MST,这些方法不仅性能高,而且具有可解释性,解决了深度学习模型通常作为“黑箱”的问题 | 尽管提出了可解释的深度学习方法,但神经网络的复杂性和数据异质性仍然是挑战,且自动推理依赖于预先创建的参考本体 | 开发基于本体论的方法,以系统化和有效利用生物信息学和生物医学领域的大规模实验数据 | 生物信息学、系统生物学和生物医学领域的实验数据 | 生物信息学 | 癌症 | 深度学习、本体论、语义整合 | Deep GONet、ONN4MST | 基因数据、微生物数据 | 癌症诊断数据集、人类肠道微生物群落样本 |
258 | 2025-02-13 |
Deep Learning-Based Detection of Malignant Bile Duct Stenosis in Fluoroscopy Images of Endoscopic Retrograde Cholangiopancreatography
2024-Dec-13, Digestion
IF:3.0Q2
DOI:10.1159/000543049
PMID:39675349
|
研究论文 | 本研究探讨了使用深度学习技术在内镜逆行胰胆管造影(ERCP)的透视图像中区分良恶性胆管狭窄的可行性 | 首次将卷积神经网络应用于ERCP透视图像,以提高恶性胆管狭窄的诊断准确性和可重复性 | 研究为回顾性设计,需要在前瞻性研究中进一步验证 | 提高恶性胆管狭窄的诊断准确性 | 接受ERCP的成年患者 | 计算机视觉 | 胆管狭窄 | 深度学习 | 卷积神经网络(CNN) | 图像 | 251名来自德国三个大学中心的患者 |
259 | 2025-02-12 |
Artificial Intelligence - Blessing or Curse in Dentistry? - A Systematic Review
2024-Dec, Journal of pharmacy & bioallied sciences
DOI:10.4103/jpbs.jpbs_1106_24
PMID:39926925
|
系统综述 | 本文系统综述了人工智能在牙科各个领域的多样化应用 | 全面分析了人工智能在牙科中的优势和挑战,涵盖了诊断、治疗和患者结果等多个方面 | 数据隐私、牙科专业人员的工作替代问题以及确保安全性和有效性的全面验证和监管需求仍是主要挑战 | 探讨人工智能在牙科中的应用及其影响 | 牙科领域的人工智能应用 | 机器学习 | NA | 机器学习、深度学习 | NA | 文本 | 607篇出版物中筛选出13篇相关文献 |
260 | 2025-02-08 |
Physics-guided multistage neural network: A physically guided network for step initial values and dispersive shock wave phenomena
2024-Dec, Physical review. E
DOI:10.1103/PhysRevE.110.065307
PMID:39916289
|
研究论文 | 本文提出了一种物理引导的多阶段神经网络(PgMSNN)模型,用于模拟复杂的色散冲击波现象 | 通过集成残差学习范式并在现有PINN方法中引入色散因子,显著增强了物理信息神经网络(PINNs)描述复杂色散现象的能力,并提出了一种高度自适应的深度Runge-Kutta方法 | NA | 提高物理信息神经网络(PINNs)在色散冲击波现象中的数值模拟精度和稳定性 | 色散冲击波现象 | 机器学习 | NA | 物理引导的多阶段神经网络(PgMSNN) | 物理引导的多阶段神经网络(PgMSNN) | 数值数据 | NA |