本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
441 | 2025-01-05 |
Basic Science and Pathogenesis
2024-Dec, Alzheimer's & dementia : the journal of the Alzheimer's Association
DOI:10.1002/alz.089010
PMID:39751068
|
研究论文 | 本文提出了一种名为时间感知循环神经网络(TA-RNN)的新型深度学习架构,用于预测轻度认知障碍(MCI)向阿尔茨海默病(AD)的转化 | TA-RNN通过时间嵌入层和基于注意力的RNN解决了电子健康记录(EHR)数据中的不规则时间间隔问题,并提供了模型的可解释性 | 模型仅在ADNI和NACC数据集上进行了评估,可能需要进一步验证其在不同数据集上的泛化能力 | 研究目的是开发一种能够预测MCI向AD转化的深度学习模型,并解决EHR数据中的不规则时间间隔问题 | 研究对象为阿尔茨海默病(AD)和轻度认知障碍(MCI)患者 | 机器学习 | 老年病 | 深度学习 | RNN, TA-RNN | 电子健康记录(EHR)、纵向认知和神经影像数据 | ADNI和NACC数据集 |
442 | 2025-01-05 |
Basic Science and Pathogenesis
2024-Dec, Alzheimer's & dementia : the journal of the Alzheimer's Association
DOI:10.1002/alz.089093
PMID:39751088
|
研究论文 | 本研究提出了一种基于深度学习的反卷积框架,用于从大规模批量RNA测序数据中推断人类大脑中阿尔茨海默病及相关痴呆症的细胞类型特异性表达数量性状位点(eQTLs) | 使用深度学习框架从批量RNA测序数据中推断细胞类型特异性eQTLs,避免了高成本的单核RNA测序 | 需要进一步的功能验证候选eQTLs和相关基因 | 解析阿尔茨海默病及相关痴呆症的遗传变异对基因表达的影响 | 人类大脑中的细胞类型特异性eQTLs | 生物信息学 | 阿尔茨海默病 | RNA-seq, WGS, snRNA-seq | 深度学习 | RNA测序数据, 全基因组测序数据 | 1,092个样本 |
443 | 2025-01-05 |
Basic Science and Pathogenesis
2024-Dec, Alzheimer's & dementia : the journal of the Alzheimer's Association
DOI:10.1002/alz.089241
PMID:39751131
|
研究论文 | 本研究利用多模态数据和机器学习、深度学习及集成方法,提高阿尔茨海默病(AD)进展预测的准确性 | 通过多模态数据集成和集成学习方法,显著提高了阿尔茨海默病进展预测的准确性,并减少了有害的假阴性 | 研究仅使用了OASIS-3纵向数据集,未来可探索更多数据模态和方法以提高预测准确性 | 提高阿尔茨海默病的早期检测和进展预测准确性 | 1,098名患者的多模态数据,包括MRI扫描、脑体积测量和临床数据 | 机器学习 | 阿尔茨海默病 | 机器学习(ML)、深度学习(DL)、集成方法 | CNN(MobileNetV2, ResNet101, ResNet152, ResNet200)、随机森林、K近邻 | MRI扫描、脑体积测量、临床数据 | 1,098名患者 |
444 | 2025-01-05 |
Basic Science and Pathogenesis
2024-Dec, Alzheimer's & dementia : the journal of the Alzheimer's Association
DOI:10.1002/alz.088814
PMID:39751145
|
研究论文 | 本研究利用预训练的深度学习模型,通过中文语音数据自动检测阿尔茨海默病 | 使用预训练的Wav2vec2模型处理中文语音数据,探索其在跨语言检测中的潜力 | 数据不平衡问题通过随机选择样本进行均衡处理,可能影响模型的泛化能力 | 开发基于语音的自动化阿尔茨海默病检测方法 | 81名台湾本土中文使用者,包括34名正常对照和47名早期阿尔茨海默病患者 | 自然语言处理 | 阿尔茨海默病 | 深度学习 | Wav2vec2 | 音频 | 81名参与者,生成2887个6秒音频片段 |
445 | 2025-01-05 |
Basic Science and Pathogenesis
2024-Dec, Alzheimer's & dementia : the journal of the Alzheimer's Association
DOI:10.1002/alz.092140
PMID:39751223
|
研究论文 | 本研究旨在开发一种深度学习模型,利用MRI预测早期受影响区域的tau蛋白积累,以早期预测疾病进展和认知衰退 | 采用基于注意力机制的编码器-解码器模型,结合Transformer模型,通过优先策略提高预测准确性 | 研究依赖于ADNI数据集,可能存在样本选择偏差,且未考虑其他可能影响tau积累的因素 | 开发一种深度学习模型,利用MRI预测早期tau蛋白积累区域 | 阿尔茨海默病患者的MRI和PET影像数据 | 数字病理学 | 阿尔茨海默病 | T1加权MRI和[18F] flortaucipir-PET成像 | 基于注意力机制的编码器-解码器模型,Transformer模型 | 影像数据 | 1010次扫描,112名测试参与者 |
446 | 2025-01-05 |
Basic Science and Pathogenesis
2024-Dec, Alzheimer's & dementia : the journal of the Alzheimer's Association
DOI:10.1002/alz.085828
PMID:39751753
|
研究论文 | 本研究介绍了一种深度学习模型,用于预测阿尔茨海默病中淀粉样蛋白β的积累 | 通过将淀粉样蛋白β的扩散数学模型转化为深度学习框架,结合多层感知机(MLP)和图卷积神经网络(GCN),实现了对淀粉样蛋白β积累的高精度预测 | 模型参数是针对整个群体优化的,对某些个体的准确性有所差异,且需要进一步解释每个术语的全面含义 | 早期诊断阿尔茨海默病并延缓疾病进展 | 淀粉样蛋白β的积累 | 数字病理学 | 阿尔茨海默病 | 深度学习 | MLP, GCN | 神经影像数据(T1结构磁共振图像、18F-Florbetapir正电子发射断层扫描、扩散加权磁共振图像) | 146名受试者的纵向数据,共436个数据点 |
447 | 2025-01-04 |
Structural Insights into Cold-Active Lipase from Glaciozyma antarctica PI12: Alphafold2 Prediction and Molecular Dynamics Simulation
2024-Dec, Journal of molecular evolution
IF:2.1Q3
DOI:10.1007/s00239-024-10219-3
PMID:39549052
|
研究论文 | 本文通过系统发育分析和深度学习工具Alphafold2预测并模拟了来自南极冰川酵母PI12的冷活性脂肪酶Glalip03的三维结构,揭示了其在低温下的稳定性和灵活性 | 利用Alphafold2预测和分子动力学模拟,首次揭示了冷活性脂肪酶Glalip03在低温下的结构稳定性和适应性机制 | 研究主要基于计算模拟,缺乏实验验证 | 研究冷活性脂肪酶在低温下的适应机制及其工业应用潜力 | 来自南极冰川酵母PI12的冷活性脂肪酶Glalip03 | 生物信息学 | NA | Alphafold2预测,分子动力学模拟 | Alphafold2 | 蛋白质序列和结构数据 | NA |
448 | 2025-01-01 |
Applications of Transformers in Computational Chemistry: Recent Progress and Prospects
2024-Dec-31, The journal of physical chemistry letters
IF:4.8Q1
DOI:10.1021/acs.jpclett.4c03128
PMID:39737793
|
综述 | 本文综述了Transformer模型在计算化学中的应用及其未来前景 | 与传统的机器学习和深度学习技术相比,Transformer模型具有细粒度的特征捕捉能力,能够高效准确地建模长序列数据的依赖关系,模拟复杂多样的化学空间,并探索数据背后的计算逻辑 | NA | 探讨Transformer模型在计算化学中的应用及其未来研究方向 | Transformer模型及其在计算化学中的应用 | 计算化学 | NA | NA | Transformer | 长序列数据 | NA |
449 | 2025-01-01 |
An efficient surface electromyography-based gesture recognition algorithm based on multiscale fusion convolution and channel attention
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81369-z
PMID:39730496
|
研究论文 | 本文提出了一种基于多尺度融合卷积和通道注意力的高效表面肌电信号手势识别算法 | 提出了Residual-Inception-Efficient (RIE)模型,结合了Inception模块和高效通道注意力机制,降低了算法复杂度并提高了识别精度 | 未提及具体局限性 | 实现更高效的多类型手势识别 | 表面肌电信号(sEMG) | 机器学习 | NA | NA | Residual-Inception-Efficient (RIE)模型 | 表面肌电信号(sEMG) | NinaPro DB1、DB3和DB4数据集,分别包含14,040、3,234和3,120个手势样本 |
450 | 2024-12-30 |
A proficient approach for the classification of Alzheimer's disease using a hybridization of machine learning and deep learning
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81563-z
PMID:39730532
|
研究论文 | 本文提出了一种结合机器学习和深度学习的新方法,用于阿尔茨海默病的早期检测和分类 | 提出了一种独特的机器学习和深度学习结合的方法,优化了阿尔茨海默病检测和分类的精度和准确性 | NA | 早期检测和分类阿尔茨海默病 | 阿尔茨海默病患者 | 机器学习 | 阿尔茨海默病 | 结构磁共振成像(sMRI) | 混合模型(机器学习和深度学习) | 图像 | NA |
451 | 2025-01-01 |
Limitations of panoramic radiographs in predicting mandibular wisdom tooth extraction and the potential of deep learning models to overcome them
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81153-z
PMID:39730557
|
研究论文 | 本研究探讨了全景X光片在预测下颌智齿拔除难度中的局限性,并评估了深度学习模型在此任务中的潜力 | 首次使用深度学习模型(AlexNet和VGG-16)来预测智齿拔除过程中是否需要牙齿分离或骨移除,并与口腔外科医生的预测能力进行了比较 | 仅使用全景X光片进行预测,准确率较低,表明单独使用全景X光片预测智齿拔除难度具有挑战性 | 预测下颌智齿拔除的难度,并评估深度学习模型在此任务中的表现 | 下颌智齿 | 数字病理 | NA | 深度学习 | CNN(AlexNet和VGG-16) | 图像(全景X光片) | NA |
452 | 2025-01-01 |
SHIVA-CMB: a deep-learning-based robust cerebral microbleed segmentation tool trained on multi-source T2*GRE- and susceptibility-weighted MRI
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81870-5
PMID:39730628
|
研究论文 | 本文介绍了一种基于深度学习的脑微出血(CMB)分割工具SHIVA-CMB,该工具在多种来源的T2*GRE和磁敏感加权MRI数据上进行了训练 | SHIVA-CMB是首个公开分享预训练模型的CMB检测工具,具有较高的泛化能力和性能 | 尽管在多个数据集上表现出色,但模型的性能可能仍受限于训练数据的多样性和数量 | 开发一种能够在大规模研究中快速表征CMB的工具,以促进对CMB病理生理学和功能后果的研究 | 脑微出血(CMB) | 数字病理学 | 脑血管疾病 | 深度学习 | 3D Unet | MRI图像 | 450次扫描来自六个不同的队列研究,测试集包括96次扫描,另外还有1992次T2*加权扫描用于验证 |
453 | 2025-01-01 |
CDUNeXt: efficient ossification segmentation with large kernel and dual cross gate attention
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82199-9
PMID:39730708
|
研究论文 | 本文提出了一种名为CDUNeXt的轻量级、自动且高效的方法,用于识别黄韧带骨化区域 | 首次将深度学习方法引入黄韧带骨化诊断,设计了轻量级模块结构,利用大核卷积提取图像特征的长距离依赖,并采用双交叉门注意力机制(DCGA)顺序捕捉通道和空间依赖,以实现快速准确的分割 | 目前仅依赖医生的主观经验进行识别,效率低且误差大 | 解决黄韧带骨化区域准确高效识别的临床痛点 | 黄韧带骨化区域 | 医学图像分割 | 脊柱狭窄 | 深度学习 | CDUNeXt | 图像 | NA |
454 | 2025-01-01 |
A new prediction model based on deep learning for pig house environment
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82492-7
PMID:39730744
|
研究论文 | 提出了一种基于贝叶斯优化、压缩激励块、卷积神经网络和门控循环单元的猪舍环境预测模型,以提高预测精度和动物福利,并提前采取控制措施 | 结合贝叶斯优化、压缩激励块、卷积神经网络和门控循环单元,提出了一种新的猪舍环境预测模型,显著提高了预测精度和稳定性 | 未提及模型在其他类型环境或更大规模数据集上的适用性 | 提高猪舍环境预测精度,优化动物福利和环境控制 | 猪舍环境参数(温度、湿度、CO和NH浓度) | 机器学习 | NA | 贝叶斯优化、卷积神经网络、门控循环单元 | BO-SE-CNN-GRU | 环境数据 | NA |
455 | 2025-01-01 |
Leveraging fuzzy embedded wavelet neural network with multi-criteria decision-making approach for coronary artery disease prediction using biomedical data
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82019-0
PMID:39730749
|
研究论文 | 本文提出了一种结合模糊小波神经网络和多准则决策方法的冠状动脉疾病预测技术 | 提出了LFWNNDMA-CADP技术,结合了模糊小波神经网络、改进的蚁群优化算法和混合小龙虾优化算法与自适应差分进化技术,用于冠状动脉疾病的预测 | 未提及具体的数据集大小和样本类型,可能影响模型的泛化能力 | 通过多准则决策模型预测冠状动脉疾病,提高诊断准确率 | 冠状动脉疾病患者 | 机器学习 | 心血管疾病 | 模糊小波神经网络、改进的蚁群优化算法、混合小龙虾优化算法与自适应差分进化技术 | FWNN | 生物医学数据 | NA |
456 | 2025-01-01 |
Quality prediction of air-cured cigar tobacco leaf using region-based neural networks combined with visible and near-infrared hyperspectral imaging
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82586-2
PMID:39732746
|
研究论文 | 本研究利用可见光和近红外高光谱成像技术结合深度学习模型,预测不同空气固化阶段的雪茄烟叶质量 | 首次将多样化区域卷积神经网络(DR-CNN)应用于雪茄烟叶质量预测,并展示了其相较于传统方法的优越性 | 研究仅在特定环境条件下进行,未考虑其他可能影响烟叶质量的因素 | 评估深度学习方法在克服数据限制方面的可行性,开发基于VNIR-HSI的雪茄烟叶质量预测模型 | 雪茄烟叶 | 计算机视觉 | NA | 可见光和近红外高光谱成像(VNIR-HSI) | 多样化区域卷积神经网络(DR-CNN) | 图像 | NA |
457 | 2025-01-01 |
Hand gestures classification of sEMG signals based on BiLSTM-metaheuristic optimization and hybrid U-Net-MobileNetV2 encoder architecture
2024-12-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82676-1
PMID:39732856
|
研究论文 | 本文提出了一种基于sEMG信号的手势分类新方法,结合了U-Net架构、MobileNetV2编码器、BiLSTM和元启发式优化 | 提出了一种结合U-Net架构、MobileNetV2编码器、BiLSTM和元启发式优化的新方法,显著提高了手势分类的准确性和鲁棒性 | 未提及具体局限性 | 提高基于sEMG信号的手势分类准确性 | sEMG信号 | 机器学习 | NA | 贝叶斯优化 | U-Net, MobileNetV2, BiLSTM | sEMG信号 | 六个标准数据库 |
458 | 2025-01-01 |
Dynamic relations between longitudinal morphological, behavioral, and emotional indicators and cognitive impairment: evidence from the Chinese Longitudinal Healthy Longevity Survey
2024-Dec-18, BMC public health
IF:3.5Q1
DOI:10.1186/s12889-024-21072-w
PMID:39696204
|
研究论文 | 本文评估了BMI、ADL和SWB对认知障碍的影响,并提出了动态风险预测模型 | 提出了基于贝叶斯联合模型和动态-DeepHit深度学习方法的高精度动态预测模型 | 未提及样本的具体数量及可能的样本偏差 | 评估BMI、ADL和SWB对认知障碍的影响,并建立动态风险预测模型 | 中国纵向健康长寿调查的参与者 | 机器学习 | 老年疾病 | 贝叶斯联合模型、动态-DeepHit深度学习方法 | 线性混合效应模型、Cox比例风险回归模型 | 纵向调查数据 | NA |
459 | 2025-01-01 |
The accuracy of deep learning models for diagnosing maxillary fungal ball rhinosinusitis
2024-Dec, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
IF:1.9Q2
DOI:10.1007/s00405-024-08948-8
PMID:39230611
|
研究论文 | 本文评估了深度学习模型在诊断上颌真菌球性鼻窦炎(MFB)中的准确性,并与鼻科医生进行了比较 | 通过增强定位和实例分割的深度学习模型,提高了上颌真菌球性鼻窦炎的诊断准确性 | 研究仅基于CT图像,未考虑其他诊断方法或临床数据 | 评估深度学习模型在诊断上颌真菌球性鼻窦炎中的准确性 | 1539名成人慢性鼻窦炎(CRS)患者的CT图像 | 计算机视觉 | 鼻窦炎 | CT成像 | MobileNetv3, ResNet50, ResNet101, YOLOv5X-SEG, YOLOv8X-SEG, YOLOv9-C-SEG | 图像 | 1539名患者(254例MFB,1285例非MFB) |
460 | 2024-12-31 |
Investigation on the reliability calculation method of gravity dam based on CNN-LSTM and Monte Carlo method
2024-Dec-29, Network (Bristol, England)
DOI:10.1080/0954898X.2024.2447281
PMID:39733444
|
研究论文 | 本文提出了一种基于CNN-LSTM和蒙特卡罗方法的重力坝可靠性计算方法 | 结合CNN和LSTM深度学习网络,提出了DS-FEM-CNN-LSTM-MC方法,提高了计算精度并减少了计算时间 | 未提及具体的数据集或实验规模,可能限制了方法的普适性验证 | 提高重力坝可靠性计算的精度和效率 | 重力坝的应力非线性动态系统 | 机器学习 | NA | 蒙特卡罗方法、DOE测试方法 | CNN、LSTM | 非线性数据 | 未提及具体样本数量 |