本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61 | 2025-06-21 |
Calibration-free estimation of field dependent aberrations for single molecule localization microscopy across large fields of view
2024-Dec-11, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.11.627909
PMID:39713420
|
研究论文 | 本文提出了一种无需校准的方法,用于估计单分子定位显微镜在大视场中的场依赖性像差 | 引入基于模型的方法直接从单分子数据估计场依赖性像差,无需校准步骤,利用节点像差理论将场依赖性像差纳入全矢量PSF模型 | NA | 提高单分子定位显微镜在大视场中的定位精度和准确性 | 微管和核孔复合物的2D和3D定位数据 | 显微镜成像 | NA | 单分子定位显微镜(SMLM) | 基于节点像差理论的PSF模型 | 2D和3D定位数据 | 视场范围达180 μm的微管和核孔复合物数据 |
62 | 2025-06-20 |
Predicting patients' sentiments about medications using artificial intelligence techniques
2024-12-30, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-83222-9
PMID:39738528
|
研究论文 | 本研究利用人工智能技术预测患者对药物的情感倾向 | 首次采用技术解释结果以提高可解释性和可理解性,并开发了深度集成模型DL_ENS | 未提及具体样本量及数据集的局限性 | 开发AI模型以预测患者对药物的情感倾向,辅助临床医生开药 | 药物相关文本数据 | 自然语言处理 | NA | Word2Vec算法、预训练词嵌入 | ML和DL模型(包括CNN、LSTM等)及集成学习模型 | 文本 | NA |
63 | 2025-06-20 |
Descriptive overview of AI applications in x-ray imaging and radiotherapy
2024-12-27, Journal of radiological protection : official journal of the Society for Radiological Protection
IF:1.4Q3
DOI:10.1088/1361-6498/ad9f71
PMID:39681008
|
综述 | 本文综述了人工智能在X射线成像和放射治疗中的应用及其对患者预后的改善 | 探讨了AI在优化放射剂量、提高放射治疗效果方面的创新方法,包括深度学习在CT重建和实时剂量估计中的应用 | 部分AI方法尚未准备好用于常规临床使用,主要由于验证挑战,如确保在不同患者群体和临床环境中的可靠性 | 研究人工智能在医学放射应用中的潜力和挑战 | X射线成像和放射治疗中的AI应用 | 数字病理学 | NA | 深度学习 | DL模型 | 图像 | NA |
64 | 2025-06-20 |
Cultivation strategies of English thinking ability in the environment of Internet of Things
2024-Dec-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e39515
PMID:39687130
|
研究论文 | 本研究旨在通过物联网环境和深度学习视角,设计LSNN推荐模型以解决英语思维培养不足的问题 | 在CNN基础上增加调整层设计LSNN模型,有效缓解数据稀疏性问题 | 实验数据稀疏性范围较窄(0.7-0.9),未测试更广泛场景 | 拓宽英语学习者视野并加强英语思维能力的培养 | 英语学习者 | 自然语言处理 | NA | 深度学习 | LSNN(基于CNN改进) | 文本数据 | 未明确说明样本数量 |
65 | 2025-06-13 |
Cardiovascular care with digital twin technology in the era of generative artificial intelligence
2024-Dec-01, European heart journal
IF:37.6Q1
DOI:10.1093/eurheartj/ehae619
PMID:39322420
|
综述 | 本文综述了数字孪生技术在心血管医学中的应用及其未来潜力,特别是在生成式人工智能的推动下 | 探讨了数字孪生技术与生成式人工智能的结合,为心血管医学带来的动态和全面的个性化模拟 | 讨论了将数字孪生技术整合到个性化心血管护理中的个体和社会挑战及伦理考虑 | 总结数字孪生在心血管医学中的应用及其未来潜力 | 心血管医学中的数字孪生技术 | 数字病理学 | 心血管疾病 | 生成式人工智能 | 机器学习与生成模型 | 多模态数据 | NA |
66 | 2025-06-10 |
Other possible perspectives for solving the negative outcome penalty paradox in the application of artificial intelligence in clinical diagnostics
2024-12-23, Journal of medical ethics
IF:3.3Q1
DOI:10.1136/jme-2024-109968
PMID:38871400
|
评论 | 本文探讨了人工智能在临床诊断中应用的负面结果惩罚悖论,并提出了三种可能的解决视角 | 提出了改变公众认知、重新设计临床实践流程和引入更多利益相关者三种新视角来解决负面结果惩罚悖论 | 未提及具体实施这些视角的技术或方法细节 | 探讨如何更有效地将人工智能整合到未来的临床实践中 | 人工智能在临床诊断中的应用 | 人工智能在医学中的应用 | NA | NA | NA | NA | NA |
67 | 2025-06-07 |
Toward trustable use of machine learning models of variant effects in the clinic
2024-Dec-05, American journal of human genetics
IF:8.1Q1
DOI:10.1016/j.ajhg.2024.10.011
PMID:39561772
|
研究论文 | 本文探讨了如何在临床中可信地使用机器学习模型预测蛋白质编码基因中错义替换的影响 | 提出了克服现有模型验证和校准策略局限性的核心原则和建议,以实现更可靠和更有影响力的变异效应预测模型应用 | 现有模型验证和校准策略仍存在重要局限性 | 提高临床变异注释的可靠性和影响力,以指导诊断和治疗 | 蛋白质编码基因中的错义替换 | 机器学习 | NA | 深度学习 | NA | 序列数据 | NA |
68 | 2025-06-07 |
DeePathNet: A Transformer-Based Deep Learning Model Integrating Multiomic Data with Cancer Pathways
2024-12-01, Cancer research communications
IF:2.0Q3
DOI:10.1158/2767-9764.CRC-24-0285
PMID:39530738
|
研究论文 | DeePathNet是一种基于Transformer的深度学习模型,整合了多组学数据和癌症通路信息,用于改进癌症诊断和预后 | DeePathNet首次将癌症特异性通路信息整合到多组学数据分析中,并采用基于Transformer的深度学习模型 | NA | 改进癌症诊断和预后预测 | 多组学数据和癌症通路 | 机器学习 | 癌症 | 多组学数据分析 | Transformer | 多组学数据 | 多个大型数据集(ProCan-DepMapSanger、Cancer Cell Line Encyclopedia、The Cancer Genome Atlas) |
69 | 2025-06-06 |
Artificial Intelligence and Radiomics Applied to Prostate Cancer Bone Metastasis Imaging: A Review
2024-Dec, iRadiology
DOI:10.1002/ird3.99
PMID:40453356
|
review | 本文综述了人工智能和放射组学在前列腺癌骨转移影像分析中的应用 | 综合分析了放射组学、机器学习和深度学习在前列腺癌骨转移影像分析中的应用,并提出了未来研究方向 | 文献中缺乏对各种方法的详细分析和未来方向的深入探讨 | 探讨定量方法在前列腺癌骨转移影像分析中的应用及其临床意义 | 前列腺癌骨转移的影像数据 | digital pathology | prostate cancer | radiomics, machine learning, deep learning | NA | image | NA |
70 | 2025-06-04 |
A Deep Learning Approach for Accurate Discrimination Between Optic Disc Drusen and Papilledema on Fundus Photographs
2024-Dec-01, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society
IF:2.0Q2
DOI:10.1097/WNO.0000000000002223
PMID:39090774
|
research paper | 本研究开发了一种深度学习系统(DLS),用于在眼底照片上准确区分视盘玻璃疣(ODD)和颅内高压引起的视乳头水肿 | 首次开发了一个专用的深度学习系统,能够高精度区分ODD和视乳头水肿,包括埋藏型ODD与轻中度视乳头水肿的鉴别 | 研究为回顾性设计,且外部验证数据集规模相对较小 | 开发一个能准确区分ODD和视乳头水肿的深度学习系统 | 视盘玻璃疣(ODD)和颅内高压引起的视乳头水肿患者 | digital pathology | ophthalmologic disease | deep learning | DLS (Deep Learning System) | image | 4,508张眼底图像(来自2,180名患者),包括训练集3,230张视乳头水肿图像和857张ODD图像,外部测试集421张图像 |
71 | 2025-06-04 |
[Development of a Deep Learning-Based System for Supporting Medical Decision-Making in PI-RADS Score Determination]
2024-Dec, Urologiia (Moscow, Russia : 1999)
PMID:40377545
|
research paper | 开发了一种基于深度学习的计算机辅助诊断系统,用于支持PI-RADS评分确定中的医疗决策 | 使用3D U-Net架构处理多模态MRI图像,旨在减少PI-RADS分级中的人为错误 | 敏感性和分割准确性有待提高,需要更大数据集和更先进的深度学习技术 | 探索基于深度学习的计算机辅助诊断系统在PI-RADS分级中的应用 | 前列腺癌患者和良性病例的MRI图像 | digital pathology | prostate cancer | MRI (T2W, DWI, DCE) | 3D U-Net | image | 136名患者(108例PCa,28例良性病例) |
72 | 2025-06-03 |
Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives
2024-12, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2024.3462299
PMID:39288061
|
综述 | 本文全面回顾了深度学习在超声定位显微镜(ULM)中的应用,重点关注稀疏微泡分布的假设方法 | 深度学习在ULM中的应用显著提高了图像质量、处理速度,并减少了微泡高浓度下的采集时间,为ULM的临床应用提供了新思路 | 当前方法在优化问题表述、评估标准和网络架构方面存在差异,仍需解决这些方法的局限性和挑战 | 探讨深度学习在超声定位显微镜中的应用及其未来潜力 | 超声定位显微镜(ULM)中的微泡定位、血流速度估计和像差校正 | 医学影像处理 | NA | 超声定位显微镜(ULM) | 深度学习 | 图像 | NA |
73 | 2025-06-03 |
VoxelMorph-Based Deep Learning Motion Correction for Ultrasound Localization Microscopy of Spinal Cord
2024-12, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2024.3463188
PMID:39292568
|
研究论文 | 提出了一种基于VoxelMorph的深度学习运动校正方法,用于提高脊髓超声定位显微镜(ULM)成像的性能 | 首次将VoxelMorph深度学习模型应用于脊髓超声定位显微镜的运动校正,显著提高了微血管重建的分辨率 | 未提及在极端运动条件下的性能表现 | 提高脊髓血管超声定位显微镜成像的准确性 | 脊髓血管系统 | 医学影像处理 | 脊髓损伤 | 超声定位显微镜(ULM) | VoxelMorph | 超声图像 | NA |
74 | 2025-06-03 |
Deep Power-Aware Tunable Weighting for Ultrasound Microvascular Imaging
2024-12, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2024.3488729
PMID:39480714
|
研究论文 | 本文提出了一种基于深度学习的功率感知可调加权方法(DPT),用于改善超声微血管成像(UMI)的质量 | 提出了一种结合卷积和Transformer的混合结构模型Yformer,用于估计噪声和信号功率,并引入可调噪声控制因子(NCF)以提高不同UMI应用的质量 | 模型仅在私有大鼠脑数据集上进行训练,可能在其他数据集上的泛化能力有待进一步验证 | 提高超声微血管成像(UMI)的图像质量,降低计算复杂度 | 超声微血管成像(UMI)中的噪声和信号功率估计 | 医学影像处理 | NA | 深度学习(DL)、平面波(PW)传输、延迟求和(DAS)波束成形 | Yformer(结合CNN和Transformer的混合结构) | 超声图像 | 公共模拟数据集、公共大鼠脑数据集、私有大鼠脑数据集、私有大鼠肝数据集 |
75 | 2025-06-03 |
ULM-MbCNRT: In Vivo Ultrafast Ultrasound Localization Microscopy by Combining Multibranch CNN and Recursive Transformer
2024-12, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2024.3388102
PMID:38607709
|
研究论文 | 本文提出了一种结合多分支CNN和递归Transformer的深度学习框架ULM-MbCNRT,用于从少量超声帧中直接重建超分辨率图像,实现超快超声定位显微镜成像 | 结合多分支CNN和递归Transformer的新型深度学习框架,显著减少了数据采集和计算时间 | NA | 开发一种能够快速实现超分辨率超声定位显微镜成像的方法 | 超声定位显微镜成像中的微血管 | 医学影像处理 | NA | 超声定位显微镜(ULM) | 多分支CNN和递归Transformer(RT) | 超声图像 | 数值模拟和体内实验 |
76 | 2025-06-03 |
Uncertainty Quantification for Conditional Treatment Effect Estimation under Dynamic Treatment Regimes
2024-Dec, Proceedings of machine learning research
PMID:40443560
|
research paper | 该研究提出了一种在动态治疗策略下估计条件治疗效果时量化深度学习模型中不确定性的方法 | 首次提出并比较了在机器学习模型中量化g-computation不确定性的多种方法,以改进动态治疗策略下的条件治疗效果估计 | 研究使用了模拟数据集和单一真实世界数据集(脓毒症数据),可能限制了结果的普遍性 | 改进动态治疗策略下条件治疗效果的估计,并量化模型不确定性 | 动态治疗策略下的治疗效果 | machine learning | sepsis | variational dropout, deep ensembles | deep learning | clinical data | 两个模拟数据集和一个真实世界脓毒症数据集 |
77 | 2025-06-01 |
High resolution kinematic approach for quantifying impaired mobility of dystrophic zebrafish larvae
2024-Dec-09, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.05.627004
PMID:39713379
|
research paper | 该研究开发了一种高分辨率运动学方法来量化营养不良斑马鱼幼虫的运动障碍 | 使用高速摄像技术和基于深度学习的无标记运动捕捉技术,开发了幼虫逃逸反应游泳的链接段模型 | NA | 评估营养不良斑马鱼幼虫的运动障碍,为早期治疗开发提供精确的生物标志物 | 营养不良斑马鱼幼虫 | digital pathology | Duchenne muscular dystrophy | high speed videography, deep learning-based markerless motion capture | random forest, support vector machine | video | NA |
78 | 2025-05-31 |
Autoencoder-based phenotyping of ophthalmic images highlights genetic loci influencing retinal morphology and provides informative biomarkers
2024-Dec-26, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btae732
PMID:39657956
|
研究论文 | 本研究利用自编码器对来自UK Biobank的31,135名参与者的视网膜光学相干断层扫描(OCT)图像进行分析,以探索遗传变异与视网膜形态之间的关系 | 使用自编码器检测视网膜图像中更细微的变异模式,并发现了118个与视网膜结构特征显著相关的遗传位点 | 研究依赖于UK Biobank的数据,可能无法完全代表其他人群 | 探索深度学习在识别视网膜图像变异模式中的应用,并发现影响视网膜形态的遗传因素 | 31,135名UK Biobank参与者的视网膜OCT图像 | 数字病理学 | 眼科疾病 | OCT | 自编码器 | 图像 | 31,135名参与者 |
79 | 2025-05-31 |
Using deep learning to classify developmental differences in reaching and placing movements in children with and without autism spectrum disorder
2024-12-05, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81652-z
PMID:39632922
|
研究论文 | 本研究利用深度学习技术分析自闭症谱系障碍(ASD)儿童与正常发育儿童在伸手和放置动作中的运动学差异,探索潜在的生物标志物 | 结合上肢运动学和深度学习方法,首次提出利用运动学特征和MLP模型对ASD儿童进行分类,准确率达78.1% | 样本量较小(41名学龄儿童),且需要在更年幼儿童群体中进一步验证特异性 | 探索可用于ASD诊断的客观生物标志物,改善ASD的早期识别 | 学龄儿童(ASD组26名,典型发育组15名) | 机器学习 | 自闭症谱系障碍 | 惯性测量单元(IMU) | MLP(多层感知器) | 运动学数据 | 41名学龄儿童(ASD组26名,典型发育组15名) |
80 | 2025-05-31 |
Non-coding genetic variants underlying higher prostate cancer risk in men of African ancestry
2024-Dec-05, Research square
DOI:10.21203/rs.3.rs-5485172/v1
PMID:39678351
|
research paper | 该研究探讨了非洲裔美国男性前列腺癌风险较高的非编码遗传变异机制 | 使用基于序列的深度学习模型识别影响增强子功能的SNPs,揭示了非洲裔男性前列腺癌风险增加的两种互补机制 | 未明确说明样本量及具体实验验证的细节 | 探索非洲裔男性前列腺癌风险较高的遗传机制 | 非洲裔美国男性前列腺癌患者 | machine learning | prostate cancer | deep learning | sequence-based deep learning model | genetic data | NA |