深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202412-202412] [清除筛选条件]
当前共找到 1304 篇文献,本页显示第 821 - 840 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
821 2024-12-13
ViTBayesianNet: An adaptive deep bayesian network-aided alzheimer disease detection framework with vision transformer-based residual densenet for feature extraction using MRI images
2024-Dec-11, Network (Bristol, England)
研究论文 提出了一种基于Vision Transformer和残差密集网络的深度贝叶斯网络辅助阿尔茨海默病检测框架,利用MRI图像进行特征提取和疾病检测 创新点在于结合了Vision Transformer和残差密集网络进行特征提取,并使用自适应深度贝叶斯网络进行阿尔茨海默病的检测,同时通过增强高尔夫优化算法优化模型参数 未提及具体的局限性 开发一种高效的深度学习方法,用于在早期阶段识别阿尔茨海默病,以提供有效的治疗 阿尔茨海默病及其在MRI图像中的特征 机器学习 阿尔茨海默病 MRI Vision Transformer-based Residual DenseNet, Adaptive Deep Bayesian Network 图像 未提及具体样本数量
822 2024-12-13
Vocal Biomarkers for Parkinson's Disease Classification Using Audio Spectrogram Transformers
2024-Dec-10, Journal of voice : official journal of the Voice Foundation IF:2.5Q1
研究论文 本研究评估了音频频谱图Transformer(AST)模型在通过语音生物标志物检测帕金森病(PD)中的有效性 提出了使用音频频谱图Transformer模型,利用其自注意力机制更好地捕捉PD相关的语音障碍,相较于传统深度学习方法具有更高的分类性能 需要进一步在更多样化的人群中进行验证以实现临床应用 评估音频频谱图Transformer模型在通过语音生物标志物检测帕金森病中的有效性 帕金森病患者的语音生物标志物 机器学习 帕金森病 音频频谱图Transformer(AST)模型 Transformer 音频 150名参与者(PC-GITA数据集:50名PD患者,50名健康对照;ITA数据集:28名PD患者,22名健康对照)
823 2024-12-13
Prediction of incident atrial fibrillation using deep learning, clinical models, and polygenic scores
2024-Dec-07, European heart journal IF:37.6Q1
研究论文 本研究开发并测试了一种基于深度学习的ECG-AI模型,用于预测心房颤动(AF),并与临床模型和AF多基因评分(PGS)进行了比较 本研究首次将深度学习应用于心电图(ECG)数据,提出了一种新的ECG-AI模型,并在多个数据集上验证了其性能,显示出比传统临床模型和多基因评分更高的预测准确性 本研究的样本主要来自一个三级心脏中心,外部验证数据集的样本量较小,可能限制了模型的普适性 开发和验证一种基于深度学习的心电图分析模型,用于预测新发心房颤动 心电图数据和心房颤动的预测 机器学习 心血管疾病 深度学习 深度学习模型 心电图数据 669,782份心电图数据,来自145,323名患者
824 2024-12-13
SAMP: Identifying antimicrobial peptides by an ensemble learning model based on proportionalized split amino acid composition
2024-Dec-06, Briefings in functional genomics IF:2.5Q3
研究论文 本文提出了一种基于比例分割氨基酸组成(PSAAC)的集成学习模型SAMP,用于识别抗菌肽 SAMP引入了新的特征类型PSAAC,能够捕捉抗菌肽序列中的残基模式和序列顺序信息,并通过集成随机投影(RP)架构提高了处理大规模数据的能力 NA 开发一种新的计算模型,用于更准确地识别抗菌肽,以应对未来可能出现的耐药细菌感染问题 抗菌肽(AMPs)及其在消除耐药病原体中的作用 机器学习 NA 集成学习模型,随机投影(RP) 集成学习模型 序列数据 不同平衡和不平衡数据集
825 2024-12-13
Deep learning for predicting rehospitalization in acute heart failure: Model foundation and external validation
2024-Dec, ESC heart failure IF:3.2Q2
研究论文 本研究开发并验证了一种基于深度学习的急性心力衰竭再住院预测模型 首次使用深度学习方法结合真实世界数据进行心力衰竭再住院预测 模型的区分度中等,AUC值在0.63到0.76之间 开发一种基于深度学习的预测模型,用于预测急性心力衰竭患者在出院后30天、90天和365天内的再住院风险 急性心力衰竭患者的再住院风险 机器学习 心血管疾病 深度学习 GRU 数据 2014年1月至2019年1月期间因急性心力衰竭住院的患者数据
826 2024-12-13
Enhancing AI Research for Breast Cancer: A Comprehensive Review of Tumor-Infiltrating Lymphocyte Datasets
2024-Dec, Journal of imaging informatics in medicine
综述 本文综述了与肿瘤浸润淋巴细胞(TIL)相关的公开数据集,旨在为乳腺癌研究中的计算机辅助病理学(CAP)工具的训练和验证提供资源 本文的创新点在于系统地回顾了公开的TIL数据集,为TIL研究社区提供了宝贵的资源 本文的局限性在于仅限于公开可用的数据集,可能无法涵盖所有相关的TIL数据 本文的研究目的是为乳腺癌研究中的计算机辅助病理学工具的训练和验证提供资源 本文的研究对象是与肿瘤浸润淋巴细胞(TIL)相关的公开数据集 数字病理学 乳腺癌 深度学习 NA 图像 NA
827 2024-12-13
Identification of lineage-specific cis-trans regulatory networks related to kiwifruit ripening initiation
2024-Dec, The Plant journal : for cell and molecular biology
研究论文 本研究使用可解释的深度学习框架预测启动子序列中的顺式调控元件(CREs)表达模式,识别了影响猕猴桃成熟过程的特定谱系CRE-TF相互作用 首次使用可解释的深度学习方法识别了猕猴桃成熟过程中新的顺反调控关系,揭示了特定谱系的CRE-TF相互作用 研究仅限于猕猴桃,未探讨其他水果的适用性 识别与猕猴桃成熟启动相关的特定谱系顺反调控网络 猕猴桃成熟过程中的顺式调控元件(CREs)和转录因子(TFs)相互作用 机器学习 NA 深度学习 深度学习框架 DNA序列 未明确提及样本数量
828 2024-12-13
Correlating Personality Traits With Acute Stress Responses in Earthquake Simulations: An HRV and RESP Analysis
2024-Dec, Stress and health : journal of the International Society for the Investigation of Stress IF:3.0Q2
研究论文 本研究探讨了人格特质与地震模拟中急性应激反应(ASR)之间的关联,通过心率变异性(HRV)和呼吸信号分析,结合深度学习模型进行预测 本研究首次将人格特质与急性应激反应的预测相结合,提出了一种基于人格的地震应激管理新方法 研究样本量较小,且仅限于特定人格类型的参与者,未来需要更大规模的研究来验证结果 研究人格特质与急性应激反应之间的关联,并开发基于人格的应激反应预测模型 参与者的人格特质、心率变异性和呼吸信号在地震模拟中的变化 机器学习 NA 多变量方差分析(MANOVA)、Toeplitz逆协方差聚类方法、卷积神经网络(CNN)和长短期记忆网络(LSTM) CNN-LSTM 心率变异性(HRV)、呼吸信号 参与者数量未明确提及
829 2024-12-13
A patch-based deep learning MRI segmentation model for improving efficiency and clinical examination of the spinal tumor
2024-Dec, Journal of bone oncology IF:3.1Q2
研究论文 本研究提出了一种基于补丁的深度学习MRI分割模型,用于提高脊柱肿瘤的效率和临床检查 本研究的创新点在于提出了一种全自动的脊柱MRI图像分割方法,利用卷积-反卷积神经网络和基于补丁的深度学习技术,显著提高了分割效率和准确性 NA 本研究的目的是提出一种全自动的脊柱MRI图像分割方法,以提高分割效率,满足临床诊断和治疗计划的需求 本研究的研究对象是脊柱MRI图像中的肿瘤 计算机视觉 脊柱疾病 卷积神经网络 卷积神经网络 图像 NA
830 2024-12-12
The role of deep learning in myocardial perfusion imaging for diagnosis and prognosis: A systematic review
2024-Dec-20, iScience IF:4.6Q1
综述 本文综述了深度学习在心肌灌注成像中的应用,重点探讨了其在诊断和预后中的可解释性方法 本文总结了深度学习在心肌灌注成像中的最新应用,并强调了可解释性方法的重要性 本文主要讨论了现有研究的挑战和未来研究的方向,未提供具体的技术实现细节 总结深度学习在心肌灌注成像中的应用,并探讨其在诊断和预后中的可解释性方法 心肌灌注成像(MPI)及其在诊断和预后中的应用 计算机视觉 心血管疾病 深度学习(DL) 卷积神经网络(CNN) 图像 NA
831 2024-12-12
Examples of implementations and the future of AI in medical diagnostics
2024-Dec-10, Przeglad epidemiologiczny
综述 本文介绍了人工智能在医疗诊断中的应用实例,并展望了未来的发展方向 探讨了深度学习算法的发展、5G技术与互联网的整合以及医疗个性化等潜在创新 提到了法律监管和数据管理适应的挑战 探讨人工智能在医疗诊断中的应用及未来发展 人工智能在医疗诊断中的应用实例及未来研究方向 机器学习 NA 深度学习 NA NA NA
832 2024-12-12
Focus on atrial fibrillation: role of atrioventricular node ablation, prediction by deep learning, and anticoagulation in device-detected arrhythmia
2024-Dec-07, European heart journal IF:37.6Q1
NA NA NA NA NA NA NA NA NA NA NA NA
833 2024-12-12
Enhancing novel isoform discovery: leveraging nanopore long-read sequencing and machine learning approaches
2024-Dec-06, Briefings in functional genomics IF:2.5Q3
综述 本文综述了利用纳米孔长读长测序技术和机器学习方法增强新剪接异构体发现的研究进展 本文讨论了长读长测序技术在检测新剪接异构体和重建复杂剪接模式方面的改进,并介绍了机器学习和深度学习算法在提高长读长测序转录组研究可靠性方面的进展 目前缺乏对哪些生物信息学工具和流程能产生最精确和一致结果的共识 讨论和比较利用长读长测序技术进行新剪接异构体发现的可行方法,并展示开发标准分析流程、工具和转录本模型规范的必要性 长读长测序技术和机器学习算法在新剪接异构体发现中的应用 生物信息学 NA 纳米孔长读长测序 机器学习 RNA转录本 25种工具
834 2024-12-12
Deep learning dives: Predicting anxiety in zebrafish through novel tank assay analysis
2024-Dec-01, Physiology & behavior IF:2.4Q2
研究论文 本研究使用深度学习模型对斑马鱼在新环境中的焦虑行为进行分类 本研究首次使用DeepLabCut和InceptionV3等深度学习模型对斑马鱼的焦虑行为进行自动化分析,提供了一种高效且成本效益高的替代传统方法的方案 本研究的局限性在于仅使用了特定的深度学习模型进行分类,未探讨其他可能更适合的模型 开发一种自动化分析斑马鱼新环境潜水实验(NTD)的方法,以预测其焦虑水平 斑马鱼的焦虑行为 计算机视觉 NA 深度学习 InceptionV3 图像 训练数据集包含图像帧
835 2024-12-12
Risk-Specific Training Cohorts to Address Class Imbalance in Surgical Risk Prediction
2024-Dec-01, JAMA surgery IF:15.7Q1
研究论文 本研究评估了在特定风险群体上训练的风险预测模型的性能,以解决手术风险预测中的类别不平衡问题 通过使用特定风险群体进行模型训练,显著提高了对低发病率并发症的预测性能 研究仅在两所大学的医院进行,样本量和结果的普适性可能有限 评估在特定风险群体上训练的风险预测模型的性能 手术后常见并发症的风险预测 机器学习 NA 深度学习 深度学习模型 文本 109445例住院手术
836 2024-12-12
Efficient deep learning surrogate method for predicting the transport of particle patches in coastal environments
2024-Dec, Marine pollution bulletin IF:5.3Q1
研究论文 本文提出了一种用于预测沿海环境中颗粒团残留运输的深度学习代理模型方法 通过仅使用相关强迫条件,训练深度学习模型来预测颗粒团的位移和扩散,并将其与简化的拉格朗日模型结合,以获得更长时间的预测 NA 开发一种高效的预测沿海环境中污染物运输的代理模型 沿海环境中颗粒团的运输 机器学习 NA 深度学习模型 DLM 颗粒团数据 NA
837 2024-12-12
Identifying and quantifying multiple pollution sources in estuaries using fluorescence spectra and gradient-based deep learning
2024-Dec, Marine pollution bulletin IF:5.3Q1
研究论文 本研究开发了一种智能方法,用于识别和量化河口地区的水污染源 提出了结合激发-发射矩阵(EEM)荧光光谱和梯度输入的深度学习模型,以提高分类和定量精度 随着混合污染源数量的增加,模型精度有所下降 开发一种智能方法来识别和量化河口地区的水污染源 河口地区的七种污染源,包括海水、雨水和五种典型污染源 机器学习 NA 深度学习 深度学习模型 荧光光谱 七种污染源的激发-发射矩阵(EEM)荧光光谱数据
838 2024-12-12
Technical and functional design considerations for a real-world interpretable AI solution for NIR perfusion analysis (including cancer)
2024-Dec, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
研究论文 本文讨论了在近红外(NIR)灌注分析中应用可解释人工智能(AI)的技术和功能设计考虑,以提高动态解释的准确性并扩展其应用 本文提出了一种新的可解释AI方法,用于实时区分手术室中的癌症和良性组织,并通过生成荧光强度曲线来实现组织灌注分类 本文主要讨论了设计和功能考虑,未详细探讨实际应用中的具体挑战和限制 开发一种可解释的AI解决方案,用于近红外灌注分析,特别是在手术中进行癌症检测和组织健康评估 近红外(NIR)灌注分析中的组织和癌症检测 机器学习 癌症 近红外(NIR)分析,荧光评估,机器学习 机器学习分类器 视频 NA
839 2024-12-12
Deep learning-based classification of alfalfa varieties: A comparative study using a custom leaf image dataset
2024-Dec, MethodsX IF:1.6Q2
研究论文 本研究利用深度学习技术对苜蓿品种进行分类,并通过自定义的叶片图像数据集比较了几种先进模型的性能 本研究引入了包含1214张苜蓿品种图像的独特数据集,并比较了几种先进深度学习模型在不同超参数配置下的性能,突出了迁移学习在植物分类任务中的优越性 NA 研究深度学习技术在苜蓿品种分类中的应用 苜蓿品种(Bilensoy-80、Diana和Nimet)的分类 计算机视觉 NA 深度学习 MobileNetV3, InceptionV3, Xception, VGG19, DenseNet121, ResNet101, EfficientNetB3 图像 1214张苜蓿品种图像
840 2024-12-12
iResNetDM: An interpretable deep learning approach for four types of DNA methylation modification prediction
2024-Dec, Computational and structural biotechnology journal IF:4.4Q2
研究论文 本文提出了一种名为iResNetDM的可解释深度学习模型,用于预测四种DNA甲基化修饰 首次将DNA甲基化修饰预测任务作为多类分类问题,并引入了结合残差网络和自注意力机制的深度学习模型,能够区分四种DNA甲基化修饰类型 之前的模型仅限于二元预测,无法全面分析不同修饰类型之间的关系,且缺乏对模型决策过程的充分解释 开发一种能够区分多种DNA甲基化修饰类型并具有解释性的深度学习模型 四种DNA甲基化修饰类型及其相互关系 机器学习 NA 深度学习 ResNet DNA序列 NA
回到顶部