本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
841 | 2024-12-12 |
Effect of shear rate on early Shewanella oneidensis adhesion dynamics monitored by deep learning
2024-Dec, Biofilm
IF:5.9Q1
DOI:10.1016/j.bioflm.2024.100240
PMID:39650339
|
研究论文 | 研究了剪切率对早期Shewanella oneidensis粘附动力学的影响,并通过深度学习进行监测 | 首次使用深度学习方法(YOLOv8)在个体水平上追踪早期粘附细菌的动态行为,并量化了不同剪切率对细菌粘附和定殖的影响 | 研究仅限于单一细菌种类(MR-1)和特定的剪切率范围,未来研究可以扩展到其他细菌种类和更广泛的剪切率范围 | 评估剪切率对早期细菌粘附动力学的影响,以更好地理解细菌定殖过程并制定相应的控制策略 | Shewanella oneidensis细菌在不同剪切率下的早期粘附行为 | 计算机视觉 | NA | 深度学习 | YOLOv8 | 图像 | 超过20,000个细菌样本 |
842 | 2024-12-12 |
Sex-and Stress-Dependent Plasticity of a Corticotropin Releasing Hormone / GABA Projection from the Basolateral Amygdala to Nucleus Accumbens that Mediates Reward Behaviors
2024-Dec-01, bioRxiv : the preprint server for biology
DOI:10.1101/2024.11.30.626183
PMID:39651305
|
研究论文 | 研究探讨了早期生活逆境(ELA)对小鼠奖励行为的影响,特别是从基底外侧杏仁核到伏隔核的皮质释放激素/GABA投射的性别依赖性可塑性 | 揭示了皮质释放激素/GABA从基底外侧杏仁核到伏隔核的投射在奖励行为中的性别特异性作用,并发现了早期生活逆境对这种投射的性别依赖性影响 | 研究主要集中在小鼠模型上,结果的普遍性和对人类的影响尚需进一步验证 | 探讨早期生活逆境对奖励行为的影响机制,特别是性别依赖性的神经回路变化 | 成年雄性和雌性CRH-Cre小鼠,分别在控制和早期生活逆境条件下 | 神经科学 | NA | 免疫染色、电生理学、组织清除、光片荧光显微镜、深度学习 | NA | 图像 | 成年雄性和雌性CRH-Cre小鼠,分别在控制和早期生活逆境条件下 |
843 | 2024-12-12 |
Automatic classification of fungal-fungal interactions using deep leaning models
2024-Dec, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2024.11.027
PMID:39655263
|
研究论文 | 本文开发了一种基于深度神经网络的AI自动化图像分类方法,用于自动分类真菌-真菌相互作用 | 本文首次引入了使用深度学习自动分类真菌-真菌相互作用的方法,并可轻松适应其他真菌物种 | NA | 开发一种自动化的方法来分类真菌-真菌相互作用,以克服传统方法耗时且难以复制的缺点 | 植物病原体与来自38,400个真菌菌株的单个分离物的相互作用 | 机器学习 | NA | 深度学习 | DenseNet121 | 图像 | 38,400个真菌菌株 |
844 | 2024-12-11 |
Deep learning-based hyperspectral image correction and unmixing for brain tumor surgery
2024-Dec-20, iScience
IF:4.6Q1
DOI:10.1016/j.isci.2024.111273
PMID:39628576
|
研究论文 | 本文提出了两种基于深度学习的模型,用于校正和解混高光谱图像,以改善脑肿瘤手术中的荧光引导 | 本文的创新点在于提出了两种深度学习模型,能够有效捕捉组织的光学和几何特性的异质性,并展示了半监督模型在人类数据上的更好泛化能力 | 本文的局限性在于仅在幻影和猪脑数据上进行了评估,尚未在人类临床试验中验证 | 本文的研究目的是改进高光谱成像在荧光引导脑肿瘤切除中的应用,以提高手术的准确性和患者预后 | 本文的研究对象是脑肿瘤手术中的高光谱图像校正和解混 | 计算机视觉 | 脑肿瘤 | 深度学习 | 深度学习模型 | 高光谱图像 | 幻影和猪脑数据 |
845 | 2024-12-11 |
Deep Learning for Generating Phase-Conditioned Infrared Spectra
2024-Dec-10, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c04786
PMID:39575882
|
研究论文 | 本文提出了一种高效的相位感知机器学习方法,用于从二维分子结构生成相位条件下的红外光谱 | 本文首次提出了一种能够生成真实世界复杂分子相位条件下红外光谱的方法,并设计了相位感知的图神经网络与transformer解码器的结合 | NA | 加速红外光谱分析,解决现有方法忽略红外光谱相位依赖性的问题 | 红外光谱的生成与分析 | 机器学习 | NA | 图神经网络,transformer解码器 | 图神经网络,transformer | 分子结构,红外光谱 | 包含11,546个实验测量红外光谱的10,288个独特分子的基准数据集 |
846 | 2024-12-11 |
Data-Quality-Navigated Machine Learning Strategy with Chemical Intuition to Improve Generalization
2024-Dec-10, Journal of chemical theory and computation
IF:5.7Q1
DOI:10.1021/acs.jctc.4c00969
PMID:39589234
|
研究论文 | 本文提出了一种基于化学直觉的数据质量导航机器学习策略,以提高有机半导体重组能预测任务的泛化能力 | 本文创新性地提出了基于化学直觉的数据质量导航策略,包括数据多样性评估、可靠性评估、数据过滤和分割技术,并构建了集成深度学习模型框架 | 本文未详细讨论该策略在其他领域的适用性和扩展性 | 提高机器学习模型在实际应用中的泛化能力 | 有机半导体分子的重组能预测 | 机器学习 | NA | 深度学习 | 集成框架 | 分子结构数据 | 15,989个有机半导体分子 |
847 | 2024-12-11 |
Assessment of image quality on the diagnostic performance of clinicians and deep learning models: Cross-sectional comparative reader study
2024-Dec-10, Journal of the European Academy of Dermatology and Venereology : JEADV
IF:8.4Q1
DOI:10.1111/jdv.20462
PMID:39655640
|
研究论文 | 本研究评估了不同图像质量(包括HDR增强的智能手机图像)对临床医生和卷积神经网络(CNN)模型诊断性能的影响 | 首次探讨了高动态范围(HDR)转换对智能手机图像质量的影响,并比较了临床医生和深度学习模型在不同图像质量下的诊断性能 | 样本量相对较小,且仅限于皮肤病变图像,研究结果的普适性可能有限 | 探讨不同图像质量对临床医生和深度学习模型诊断能力的影响 | 皮肤病变图像的诊断性能 | 计算机视觉 | 皮肤癌 | HDR转换 | 卷积神经网络(CNN) | 图像 | 101个皮肤病变,303张图像,18名皮肤科临床医生参与评估 |
848 | 2024-12-11 |
Utilizing deep learning-based causal inference to explore vancomycin's impact on continuous kidney replacement therapy necessity in blood culture-positive intensive care unit patients
2024-Dec-10, Microbiology spectrum
IF:3.7Q2
DOI:10.1128/spectrum.02662-24
PMID:39656005
|
研究论文 | 本研究利用基于深度学习的因果推断模型,探讨万古霉素对血培养阳性重症监护病房患者连续肾脏替代治疗需求的影响 | 本研究首次使用深度学习因果推断模型量化万古霉素对连续肾脏替代治疗(CKRT)启动概率的影响,并识别出与高敏感性相关的特定患者特征 | NA | 评估万古霉素对血培养阳性重症监护病房患者连续肾脏替代治疗风险的影响 | 血培养阳性的重症监护病房患者 | 机器学习 | NA | 深度学习因果推断 | 随机森林、Light Gradient Boosting Machine | 文本 | 1318名患者,其中41名需要连续肾脏替代治疗 |
849 | 2024-12-11 |
Prognostic Modeling for Liver Cirrhosis Mortality Prediction and Real-Time Health Monitoring from Electronic Health Data
2024-Dec-09, Big data
IF:2.6Q2
DOI:10.1089/big.2024.0071
PMID:39651607
|
研究论文 | 本研究旨在利用电子健康数据构建预测肝硬化患者死亡率的模型,并进行实时健康监测 | 提出了一种基于深度学习的人工神经网络模型,旨在超越现有的终末期肝病模型(MELD)的预测能力 | 在处理不平衡数据集时,模型在精确度和召回率之间存在权衡问题 | 提高肝硬化相关死亡率的预测准确性,并改进应对这一挑战的方法 | 肝硬化患者的死亡率预测和健康监测 | 机器学习 | 肝病 | 深度学习 | 人工神经网络 | 电子健康数据 | 使用了不同比例的训练数据集(70%、80%和90%)进行模型训练和评估 |
850 | 2024-12-11 |
Current State of Community-Driven Radiological AI Deployment in Medical Imaging
2024-Dec-09, JMIR AI
DOI:10.2196/55833
PMID:39653370
|
综述 | 本文概述了人工智能与医学影像领域的交叉现状,并探讨了在医院环境中部署AI模型的挑战 | 介绍了AI用例的分类法,并提供了AI模型在医院中集成的实际案例,同时介绍了MONAI作为解决AI集成需求的开放源代码联盟 | 未具体提及 | 探讨AI在医学影像中的应用现状及部署挑战 | 医学影像领域的AI模型及其在临床工作流程中的应用 | 医学影像 | NA | 深度学习 | NA | 影像 | NA |
851 | 2024-12-11 |
Fusion Learning from Non-contrast CT Scans for the Detection of Hemorrhagic Transformation in Stroke Patients
2024-Dec-09, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01350-0
PMID:39653876
|
研究论文 | 本研究开发并验证了一种基于非对比CT扫描的计算机辅助诊断系统,用于预测接受再灌注治疗的卒中患者的出血性转化 | 本研究通过结合DenseNet201和Vision Transformers(ViTs)特征,显著提高了预测模型的准确性和AUC值 | 本研究为回顾性研究,样本量相对较小,且仅限于急性缺血性卒中患者 | 开发和验证一种基于非对比CT扫描的计算机辅助诊断系统,用于预测卒中患者的出血性转化 | 接受再灌注治疗的急性缺血性卒中患者 | 计算机视觉 | 卒中 | 卷积神经网络(CNN)、Vision Transformers(ViTs) | DenseNet201、Vision Transformers(ViTs) | 图像 | 188名急性缺血性卒中患者,包含2076张非对比CT图像 |
852 | 2024-12-11 |
Prediction of Nursing Need Proxies Using Vital Signs and Biomarkers Data: Application of Deep Learning Models
2024-Dec-09, Journal of clinical nursing
IF:3.2Q1
DOI:10.1111/jocn.17612
PMID:39654010
|
研究论文 | 本研究开发了深度学习模型,用于预测住院患者的护理需求代理,并将其预测效能与传统回归模型进行比较 | 本研究首次将循环神经网络(RNN)和长短期记忆网络(LSTM)应用于护理需求预测,并证明了其优于传统回归模型的预测能力 | 在快速变化时期,模型的预测准确性显著降低 | 开发和验证深度学习模型,以预测住院患者的护理需求代理 | 20,855名20岁及以上住院成年患者的电子健康记录数据 | 机器学习 | NA | 深度学习 | RNN, LSTM | 文本 | 20,855名成年患者 |
853 | 2024-12-11 |
Evaluating deep learning models for classifying OCT images with limited data and noisy labels
2024-12-05, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81127-1
PMID:39638854
|
研究论文 | 本研究评估了在数据有限和标签噪声情况下,使用深度学习模型对OCT图像进行分类的性能 | 本研究首次系统评估了在数据稀缺和标签噪声情况下,多种深度学习架构在OCT图像分类中的表现,并提出了通过增加训练样本量来缓解标签错误对分类性能的影响 | 研究中使用的样本量和标签噪声水平有限,可能无法完全代表所有临床情况 | 评估在数据稀缺和标签噪声情况下,深度学习模型对OCT图像分类的性能,以提高视网膜疾病诊断和管理的准确性和实际应用 | 视网膜病理与健康情况的OCT图像分类 | 计算机视觉 | NA | 深度学习 | ResNet18, ResNet34, ResNet50, VGG16, InceptionV3 | 图像 | 5526张OCT图像,以及减少到21张的子集 |
854 | 2024-12-11 |
A hybrid cardiovascular arrhythmia disease detection using ConvNeXt-X models on electrocardiogram signals
2024-12-05, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81992-w
PMID:39638880
|
研究论文 | 本研究提出了一种结合ConvNeXt-X深度学习模型和数据平衡技术的混合方法,用于提高心律失常分类的准确性 | 本研究的创新点在于将ConvNeXt-X模型与随机过采样和SMOTE-TomekLink技术结合,显著提高了心律失常检测的准确性 | 本研究的局限性在于仅在MIT-BIH心律失常数据库上进行了验证,未来需要在更多数据集上进行验证 | 本研究的目的是提高心血管心律失常疾病的检测准确性,以支持临床决策 | 本研究的研究对象是心电图信号中的心律失常类型 | 机器学习 | 心血管疾病 | ConvNeXt-X模型 | ConvNeXt | 信号 | MIT-BIH心律失常数据库 |
855 | 2024-12-11 |
The analysis of generative adversarial network in sports education based on deep learning
2024-12-05, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81107-5
PMID:39639013
|
研究论文 | 本研究探讨了在体育教育领域中使用生成对抗网络(GAN)技术,通过深度学习评估大学生心理健康素质 | 本研究引入了GAN和SeqGAN模型,并构建了一个生成评价文本的模型,通过引入奖励函数来增强模型的效果 | 本研究的局限性在于仅在体育领域进行了验证,且模型在生成器更新速度超过判别器时损失不收敛 | 本研究的目的是简化撰写质量评估的过程,并提高评估评论的公平性 | 本研究的对象是参与体育活动的大学生的心理健康素质 | 机器学习 | NA | 生成对抗网络(GAN) | 生成对抗网络(GAN) | 文本 | NA |
856 | 2024-12-11 |
Detection of three-rooted mandibular first molars on panoramic radiographs using deep learning
2024-12-05, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82378-8
PMID:39639099
|
研究论文 | 本研究旨在开发一种基于深度学习的系统,用于在全景X光片上检测三根下颌第一磨牙,并评估其诊断性能 | 本研究首次使用五种卷积神经网络模型(ResNet-101、ResNet-50、DenseNet-201、MobileNet-v3和Inception-v3)对三根和两根下颌第一磨牙进行分类,并展示了ResNet-101在诊断性能上的优越性 | 当使用仅包含下颌第一磨牙远端一半的图像块时,CNN的性能有所下降 | 开发和评估一种基于深度学习的系统,用于在全景X光片上检测三根下颌第一磨牙 | 下颌第一磨牙的全景X光片和锥束CT图像 | 计算机视觉 | NA | 深度学习 | 卷积神经网络(CNN) | 图像 | 730名患者的1444颗下颌第一磨牙(其中367颗为三根,1077颗为两根) |
857 | 2024-12-11 |
Res-TransNet: A Hybrid deep Learning Network for Predicting Pathological Subtypes of lung Adenocarcinoma in CT Images
2024-Dec, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01149-z
PMID:38861071
|
研究论文 | 本研究开发了一种基于CT图像的混合深度学习网络,用于预测早期肺腺癌的病理亚型 | 提出了Res-TransNet模型,通过集成残差网络(ResNet)和视觉变换器(ViT)来提高分类性能 | 实验结果主要基于内部和外部验证集,未来需要更多临床验证 | 开发一种能够准确预测早期肺腺癌病理亚型的深度学习模型 | 早期肺腺癌的病理亚型,包括浸润性腺癌(IAC)、微浸润性腺癌和原位腺癌 | 计算机视觉 | 肺腺癌 | 深度学习 | 混合模型(ResNet和ViT的集成) | 图像 | 1411个病理证实的磨玻璃结节(GGNs) |
858 | 2024-12-11 |
Deep Learning Detection of Hand Motion During Microvascular Anastomosis Simulations Performed by Expert Cerebrovascular Neurosurgeons
2024-Dec, World neurosurgery
IF:1.9Q2
DOI:10.1016/j.wneu.2024.09.069
PMID:39305985
|
研究论文 | 本文使用深度学习技术对经验丰富的脑血管神经外科医生在模拟显微血管吻合术中的手部运动进行定量评估 | 本文首次使用深度学习技术进行无物理传感器的手部运动跟踪,并定量评估手术动作 | 本文仅评估了5位专家的手部运动数据,样本量较小 | 研究深度学习在手术训练中的应用,评估专家手术动作的差异 | 经验丰富的脑血管神经外科医生在模拟显微血管吻合术中的手部运动 | 计算机视觉 | NA | 深度学习 | NA | 视频 | 5位经验丰富的脑血管神经外科医生 |
859 | 2024-12-11 |
Automatic sleep staging based on 24/7 EEG SubQ (UNEEG medical) data displays strong agreement with polysomnography in healthy adults
2024-Dec, Sleep health
IF:3.4Q2
DOI:10.1016/j.sleh.2024.08.007
PMID:39406630
|
研究论文 | 本文评估了基于24/7皮下脑电图(UNEEG医疗)数据的自动睡眠分期系统在健康成年人中的表现 | 使用UNEEG医疗的24/7皮下脑电图设备和深度学习模型U-SleepSQ进行自动睡眠分期,并与多导睡眠图进行比较 | 研究仅在健康成年人中进行,样本量较小 | 评估自动睡眠分期系统在健康成年人中的表现 | 健康成年人 | 机器学习 | NA | 24/7皮下脑电图(UNEEG医疗) | U-SleepSQ | 脑电图数据 | 22名健康成年人,每人1-6次记录 |
860 | 2024-12-11 |
Understanding Occlusion and Temporomandibular Joint Function Using Deep Learning and Predictive Modeling
2024-Dec, Clinical and experimental dental research
IF:1.7Q3
DOI:10.1002/cre2.70028
PMID:39563180
|
综述 | 本文探讨了使用深度学习和预测建模来理解咬合和颞下颌关节功能,并提供了关于复杂牙科疾病如颞下颌紊乱症的见解 | 本文介绍了人工智能驱动的预测建模在牙科领域的应用,特别是深度学习在量化和分析咬合与颞下颌关节功能复杂关系中的作用 | 本文主要为综述性质,未提供具体的实验数据或模型验证结果 | 探讨预测建模和人工智能在理解咬合和颞下颌关节功能中的应用,并提供关于颞下颌紊乱症的诊断和治疗见解 | 咬合、颞下颌关节功能以及颞下颌紊乱症 | 机器学习 | 颞下颌紊乱症 | 深度学习 | NA | 图像 | NA |