深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202412-202412] [清除筛选条件]
当前共找到 1098 篇文献,本页显示第 901 - 920 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
901 2024-11-18
Assessing the impact of ultrasound image standardization in deep learning-based segmentation of carotid plaque types
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 研究超声图像标准化对基于深度学习的颈动脉斑块类型分割的影响 提出了三种逐步预处理方案,以发现最优的超声图像标准化方法,并评估每种预处理对不同斑块类型分割性能的影响 研究中未涵盖所有斑块类型,特别是均匀回声斑块或具有声影的严重钙化斑块 评估超声图像标准化对基于深度学习的颈动脉斑块类型分割的影响 颈动脉斑块类型的分割 计算机视觉 心血管疾病 深度学习 CFPNet-M 图像 276张超声图像,来自三个医疗中心
902 2024-11-18
DEDUCE: Multi-head attention decoupled contrastive learning to discover cancer subtypes based on multi-omics data
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种基于对称多头注意力编码器(SMAE)的无监督对比学习模型DEDUCE,用于分析多组学癌症数据并识别癌症亚型 引入了基于多头注意力机制的亚型解耦对比学习方法,同时从多组学数据中学习特征并进行聚类,以识别癌症亚型 NA 开发一种新的模型来分析多组学癌症数据,以识别和表征癌症亚型 多组学癌症数据和急性髓系白血病(AML)的亚型 机器学习 血液肿瘤 多头注意力机制 对称多头注意力编码器(SMAE) 多组学数据 模拟多组学数据集、单细胞多组学数据集和癌症多组学数据集,以及AML的六个亚型
903 2024-11-17
Predicting Therapeutic Response to Hypoglossal Nerve Stimulation Using Deep Learning
2024-Dec, The Laryngoscope
研究论文 开发和验证机器学习和深度学习模型,利用药物诱导睡眠内镜图像预测舌下神经刺激器的治疗效果 首次使用深度神经网络从药物诱导睡眠内镜图像中预测舌下神经刺激器的治疗效果 需要多机构数据和图像集来开发可推广的预测模型 预测舌下神经刺激器的治疗效果,以优化患者选择 药物诱导睡眠内镜图像和舌下神经刺激器植入患者 机器学习 NA 深度学习 深度神经网络 图像 25,040张图像,来自127名患者
904 2024-11-17
MMGCN: Multi-modal multi-view graph convolutional networks for cancer prognosis prediction
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出了一种名为MMGCN的多模态多视角图卷积网络框架,用于癌症预后预测 通过融合基因表达、拷贝数变异和临床数据构建患者相似网络,并利用多视角图卷积网络和视图级注意力机制捕捉患者相似性的多样性 NA 提高癌症患者预后预测的准确性 癌症患者的基因和临床数据 机器学习 NA 图卷积网络 图卷积网络 基因表达数据、拷贝数变异数据、临床数据 四个公共数据集,包括METABRIC、TCGA-BRCA、TCGA-LGG和TCGA-LUSC
905 2024-11-17
Immunohistochemistry annotations enhance AI identification of lymphocytes and neutrophils in digitized H&E slides from inflammatory bowel disease
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文开发了一种自动化管道,利用免疫组化注释增强AI在数字化H&E切片中识别淋巴细胞和中性粒细胞的能力,特别是在炎症性肠病中的应用 本文的创新点在于开发了一种自动化管道,通过免疫组化注释将细胞标签从免疫组化ROI转移到H&E ROI,从而创建了一个包含大量标记细胞的新数据集,用于训练深度学习模型 尽管模型在测试中表现良好,但其性能在不同数据集上的泛化能力仍需进一步验证 开发一种能够准确识别和分类数字化H&E切片中淋巴细胞和中性粒细胞的AI模型,以辅助炎症性肠病的诊断和管理 数字化H&E切片中的淋巴细胞和中性粒细胞 数字病理学 炎症性肠病 免疫组化 HoVer-Net 图像 19张数字化H&E切片和相应的免疫组化染色切片,共519个ROI,包含235,256个标记细胞
906 2024-11-17
Flood simulation using LISFLOOD and inundation effects: A case study of Typhoon In-Fa in Shanghai
2024-Dec-01, The Science of the total environment
研究论文 本研究使用LISFLOOD模型和S1FLOOD深度学习模型,模拟了2021年7月23日至28日台风“烟花”对上海造成的洪水影响 本研究结合了LISFLOOD水动力模型和S1FLOOD深度学习模型,利用多源数据对上海的洪水进行了动态模拟,并量化了洪水对人口、土地利用和建筑的影响 本研究主要集中在台风“烟花”对上海的影响,未来可以扩展到其他城市或不同类型的自然灾害 本研究的目的是通过模拟台风“烟花”对上海的洪水影响,提高城市洪水应急响应能力 本研究主要研究对象是台风“烟花”对上海造成的洪水及其对人口、土地利用和建筑的影响 NA NA LISFLOOD水动力模型,S1FLOOD深度学习模型 深度学习模型 卫星图像 NA
907 2024-11-17
Review of machine learning methods for sea level change modeling and prediction
2024-Dec-01, The Science of the total environment
综述 本文综述了用于海平面变化建模和预测的机器学习方法 本文揭示了人工神经网络(尤其是深度学习模型及其混合变体)在短期海平面异常预测中优于传统回归和简单机器学习技术 简单模型在处理复杂非线性场景时往往准确性较低 评估开发用于预测和预报海平面变化的稳健机器学习模型的方法和途径 海平面变化预测和预报的机器学习模型 机器学习 NA 机器学习 人工神经网络(ANN) NA NA
908 2024-11-17
Paying attention to uncertainty: A stochastic multimodal transformers for post-traumatic stress disorder detection using video
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种基于随机多模态Transformer的决策支持系统,用于从视频中检测创伤后应激障碍 本文的创新点在于使用了一种新的多模态深度学习方法,基于随机Transformer和视频数据,能够利用其随机激活函数和层来学习输入的稀疏表示 NA 本文的研究目的是开发一种新的方法,用于从视频中检测创伤后应激障碍 本文的研究对象是创伤后应激障碍的症状,包括侵入性思维、噩梦、过度警觉和回避行为 机器学习 心理疾病 多模态深度学习 Transformer 视频 本文使用了eDAIC数据集,该数据集包含患有和不患有创伤后应激障碍的个体的临床访谈
909 2024-11-17
Classifying eutrophication spatio-temporal dynamics in river systems using deep learning technique
2024-Dec-01, The Science of the total environment
研究论文 研究利用深度学习技术对韩国主要河流的富营养化时空动态进行分类 本研究采用卷积神经网络(CNN)模型,直接从水质数据中提取特征,无需先验知识,相比传统数值模型具有更高的分类准确性 研究仅限于韩国的四条主要河流,且数据时间跨度为2014年至2022年 旨在利用深度学习技术分析韩国主要河流的富营养化状况 韩国的汉江、锦江、荣山江和洛东江的水质数据 机器学习 NA 深度学习 卷积神经网络(CNN) 水质数据 2014年至2022年期间的四条河流的水质数据
910 2024-11-17
NecroGlobalGCN: Integrating micronecrosis information in HCC prognosis prediction via graph convolutional neural networks
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种基于图卷积神经网络(GCN)的肝细胞癌(HCC)预后预测模型,该模型整合了微坏死信息以提高预后分层的质量 本文创新性地将微坏死信息整合到图卷积神经网络中,显著提高了预后预测的准确性和可解释性 NA 开发一种能够帮助临床医生充分利用微坏死信息来评估患者生存率的模型 肝细胞癌(HCC)患者的预后预测 机器学习 肝癌 图卷积神经网络(GCN) GCN 图像 3622张切片,来自752名原发性HCC患者
911 2024-11-17
Lazy Resampling: Fast and information preserving preprocessing for deep learning
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文介绍了一种名为Lazy Resampling的软件,通过将空间预处理操作重新表述为图形管道,减少了深度学习中数据预处理的执行时间和信号退化 Lazy Resampling通过将多个重采样步骤合并为一个单一的重采样操作,减少了信息损失,并简化了管道设计 NA 减少深度学习中数据预处理的执行时间和信号退化,提高网络稳定性和泛化能力 医学分割Decathlon数据集上的传统管道和Lazy Resampling管道 计算机视觉 NA NA UNet 图像 医学分割Decathlon数据集
912 2024-11-17
Multi-modal networks for real-time monitoring of intracranial acoustic field during transcranial focused ultrasound therapy
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种多模态网络,用于实时监测经颅聚焦超声治疗过程中的颅内声场 利用深度学习的优势,提出了一种能够实时生成颅内压力图的多模态网络 仅在11名受试者上进行了验证,样本量较小 提高经颅聚焦超声治疗的安全性和准确性 经颅聚焦超声治疗过程中的颅内声场 计算机视觉 NA k-空间方法 卷积神经网络和Swin Transformer 压力图、医学图像和换能器位置 11名人类受试者
913 2024-11-17
Multi-scale dual-channel feature embedding decoder for biomedical image segmentation
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种用于生物医学图像分割的多尺度双通道特征嵌入解码器 创新点在于提出了多尺度双通道解码器,结合了卷积网络和注意力门控Swin Transformer,有效捕捉局部和全局上下文,减少计算复杂度 需要大量数据进行模型训练 提高生物医学图像分割的准确性 肝脏肿瘤和脾脏的图像分割 计算机视觉 NA 卷积网络、注意力门控Swin Transformer CNN、Transformer 图像 使用了LiTS、3DIRCADb、spleen和来自印度加尔各答医学院的私有数据集
914 2024-11-17
Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert-Huang and wavelet transforms with explainable vision transformer and CNN models
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本研究开发了一种基于深度学习的模型,用于早期预测心源性猝死(SCD),通过融合希尔伯特-黄变换和小波变换提取的ECG特征,并结合可解释的视觉变换器和CNN模型 本研究的创新点在于开发了一种多模态可解释的深度学习模型,能够提前30分钟预测SCD,显著提高了现有方法的预测性能 NA 开发一种基于深度学习的模型,用于早期预测心源性猝死(SCD) 心源性猝死(SCD)的早期预测 机器学习 心血管疾病 希尔伯特-黄变换(HHT),小波变换 1D-CNN,长短期记忆网络(LSTM),视觉变换器(ViT),2D-CNN ECG信号,2D标度图,2D希尔伯特谱 NA
915 2024-11-17
Integrating transcriptomic data and digital pathology for NRG-based prediction of prognosis and therapy response in gastric cancer
2024-Dec, Annals of medicine IF:4.9Q1
研究论文 本研究整合转录组数据和数字病理学,基于非凋亡性细胞死亡相关基因(NRG)预测胃癌的预后和治疗反应 首次构建了基于NRG的预测模型,并结合深度学习模型ResNet50从数字病理切片中预测NRG特征 研究样本主要来自公开数据库,可能存在数据偏倚;深度学习模型的泛化能力需进一步验证 探讨非凋亡性细胞死亡相关基因在胃癌中的预后价值及其与免疫反应的关系,并开发预测模型 胃癌患者的转录组数据和数字病理切片 数字病理学 胃癌 RNA测序、实时定量PCR、单细胞RNA测序 ResNet50 基因表达数据、临床信息、数字病理图像 来自The Cancer Genome Atlas和Gene Expression Omnibus数据库的胃癌患者数据
916 2024-11-15
GNN-DDAS: Drug discovery for identifying anti-schistosome small molecules based on graph neural network
2024-Dec-15, Journal of computational chemistry IF:3.4Q2
研究论文 提出了一种基于图神经网络的深度学习框架GNN-DDAS,用于发现抗血吸虫小分子药物 利用图神经网络提取分子图的结构特征,并通过多层感知机从SMILES序列中提取序列特征,最终通过全连接网络预测活性抗血吸虫小分子 未提及具体限制 开发一种新的计算机辅助方法,以提高发现活性抗血吸虫小分子的准确性 抗血吸虫小分子药物 机器学习 寄生虫病 图神经网络 图神经网络 分子图 未提及具体样本数量
917 2024-11-15
Enhancing protein-ligand binding affinity prediction through sequential fusion of graph and convolutional neural networks
2024-Dec-15, Journal of computational chemistry IF:3.4Q2
研究论文 本文提出了一种通过顺序融合图神经网络(GNN)和卷积神经网络(CNN)来预测蛋白质-配体结合亲和力的模型 通过将GNN的中间输出与CNN的输入特征连接,显著提高了模型在CASF-2016基准测试中的性能,并在虚拟筛选任务中展示了其优势 NA 提高蛋白质-配体结合亲和力预测的准确性 蛋白质-配体结合亲和力 机器学习 NA 图神经网络(GNN)、卷积神经网络(CNN) GNN和CNN的融合模型 结构数据 涉及CASF-2016基准测试数据集和PI5P4Kα目标的虚拟筛选任务
918 2024-11-15
Imaging pollen using a Raspberry Pi and LED with deep learning
2024-Dec-10, The Science of the total environment
研究论文 本文展示了使用树莓派和LED灯结合深度学习技术进行花粉成像的方法 利用低成本的树莓派相机和LED灯捕捉花粉的散射模式,并通过深度学习将其转换为20倍显微镜放大等效图像 NA 开发低成本的小型成像传感器,用于全球花粉监测,以缓解花粉热症状 花粉颗粒及其散射模式 计算机视觉 NA 深度学习 神经网络 图像 涉及未在训练中见过的植物花粉
919 2024-11-15
Improved PM2.5 prediction with spatio-temporal feature extraction and chemical components: The RCG-attention model
2024-Dec-10, The Science of the total environment
研究论文 提出了一种新的深度学习模型RCG-Attention,用于提取时空特征和化学成分,以提高PM2.5浓度的预测精度 结合了残差神经网络和卷积门控循环网络,并通过多头注意力机制融合时空特征,显著提高了PM2.5浓度的预测性能 未提及具体限制 提高PM2.5浓度的预测精度 PM2.5浓度的时空特征和化学成分 机器学习 NA 深度学习 RCG-Attention模型 时空数据和化学成分数据 多个监测站点的数据
920 2024-11-15
Identification of histopathological classification and establishment of prognostic indicators of gastric adenocarcinoma based on deep learning algorithm
2024-Dec, Medical molecular morphology IF:1.2Q3
研究论文 本研究旨在基于深度学习算法建立胃腺癌的病理分类预测模型 使用深度学习算法对胃腺癌的病理亚型进行准确预测,并结合DL特征分析免疫浸润和患者预后的差异 样本量相对较小,外部验证集数量有限 建立胃腺癌的病理分类和预后指标 胃腺癌患者的病理类型和预后 数字病理 胃癌 深度学习算法 DL模型 图像 356例胃腺癌患者的病理图像,80例外部验证的H&E染色全切片图像
回到顶部