深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202501] [清除筛选条件]
当前共找到 2494 篇文献,本页显示第 2041 - 2060 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
2041 2025-01-24
Reproducibility of automatic adipose tissue segmentation using proton density fat fraction images between 1.5 and 3.0 T magnetic resonance
2025-Jan-02, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究评估了使用深度学习模型在不同磁场强度下对全身脂肪组织分布分析的重复性 首次在不同磁场强度(1.5 T和3.0 T)下评估了基于深度学习的脂肪组织分割方法的重复性 在胸部的IAT体积、TAT/WH比率和SAT/TAT比率指标上,由于不同磁场强度的敏感性效应,重复性较差 评估在不同磁场强度下使用质子密度脂肪分数(PDFF)图像进行全身脂肪组织分布分析的重复性 24名志愿者 医学影像分析 代谢健康相关疾病 磁共振成像(MRI) U-Net 图像 24名志愿者
2042 2025-01-24
Development and validation of a multi-parametric MRI deep-learning model for preoperative lymphovascular invasion evaluation in rectal cancer
2025-Jan-02, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究开发并验证了一种基于多参数MRI的深度学习模型,用于术前评估直肠癌患者的淋巴血管侵犯状态 首次结合T2加权图像、扩散加权图像和临床因素,构建了一个综合模型来评估直肠癌的淋巴血管侵犯状态,并在外部中心进行了验证 研究为回顾性设计,样本量相对有限,且仅来自两个中心,可能限制了模型的泛化能力 开发并验证一种基于MRI的深度学习模型,用于术前评估直肠癌患者的淋巴血管侵犯状态 直肠癌患者 数字病理 直肠癌 MRI 3D ResNet-18 图像 489名患者(320名训练集,80名内部验证集,89名外部测试集)
2043 2025-01-24
Brain tumor enhancement prediction from pre-contrast conventional weighted images using synthetic multiparametric mapping and generative artificial intelligence
2025-Jan-02, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究提出了一种使用生成人工智能从预对比常规加权图像中预测脑肿瘤增强的方法,以减少对钆基对比剂(GBCAs)的依赖 通过深度学习生成合成参数图,从预对比常规加权图像中预测T1加权增强,避免了使用GBCAs 研究样本量较小,仅包括15名胶质瘤患者和5名健康志愿者,且需要进一步验证在其他数据集上的泛化能力 减少对钆基对比剂的依赖,通过合成参数图预测脑肿瘤增强 胶质瘤患者和健康志愿者的脑部图像 数字病理学 脑肿瘤 深度学习 生成人工智能 图像 15名胶质瘤患者、5名健康志愿者和493名胶质母细胞瘤患者
2044 2025-01-24
Chemical shift encoding based double bonds quantification in triglycerides using deep image prior
2025-Jan-02, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究评估了一种利用深度图像先验(DIP)的深度学习方法,用于从化学位移编码的多回波梯度回波图像中量化甘油三酯中的双键和亚甲基间隔双键,无需网络训练 该方法通过基于信号约束的成本函数,在单张图像切片上通过迭代过程不断优化神经网络参数,实现了无需网络训练的双键量化 研究主要基于幻影实验和少量扫描,样本量较小,且未在大规模临床数据上验证 评估深度图像先验(DIP)在量化甘油三酯中双键和亚甲基间隔双键方面的潜力 甘油三酯中的双键和亚甲基间隔双键 计算机视觉 代谢紊乱和炎症 化学位移编码的多回波梯度回波成像 深度图像先验(DIP) 图像 幻影实验和少量扫描
2045 2025-01-24
Using resting-state functional magnetic resonance imaging and contrastive learning to explore changes in the Parkinson's disease brain network and correlations with gait impairment
2025-Jan-02, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究利用静息态功能磁共振成像(rs-fMRI)数据和对比学习方法,探索帕金森病(PD)患者脑网络的变化及其与步态障碍的相关性 首次将深度学习模型应用于rs-fMRI数据以区分PD患者和健康对照组(HCs),并首次将客观步态参数与PD患者的脑网络变化相关联 样本量较小,仅包括29名PD患者和38名健康对照组 探索PD患者脑网络中的异常连接区域,并研究这些区域与步态参数的相关性 帕金森病患者和健康对照组 计算机视觉 帕金森病 静息态功能磁共振成像(rs-fMRI) 卷积神经网络(CNN)和对比学习(CL) 图像 29名PD患者和38名健康对照组
2046 2025-01-24
An automatic and real-time echocardiography quality scoring system based on deep learning to improve reproducible assessment of left ventricular ejection fraction
2025-Jan-02, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究开发了一种基于深度学习的自动实时超声心动图质量评分系统,旨在提高左心室射血分数评估的可重复性 创新性地开发了一种深度学习模型,能够实时自主检测心脏关键解剖结构,并提供质量评分和左心室射血分数估计 模型在加权平均精度和加权平均召回率方面表现一般,评分范围在0.5到0.6之间 开发一种自动实时超声心动图质量评估系统,减少左心室射血分数测量误差 超声心动图数据集 计算机视觉 心血管疾病 深度学习 深度学习模型 图像 来自10个中国医疗中心的2461名参与者的5000多个超声心动图数据集,以及来自两个外部医疗中心的175名参与者用于模型验证
2047 2025-01-24
A multi-patch-based deep learning model with VGG19 for breast cancer classifications in the pathology images
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 本文提出了一种基于多片段的深度学习模型MPa-DCAE,结合VGG19用于病理图像中的乳腺癌检测和分类 MPa-DCAE模型结合了VGG19的层次特征提取能力和深度卷积自编码器(DCAE)框架,通过多片段方法提取病理图像中的感兴趣区域,增强了模型的判别能力 NA 开发一种自动化的乳腺癌诊断方法,以提高病理图像中乳腺癌检测和分类的准确性 乳腺癌病理图像 计算机视觉 乳腺癌 深度学习 VGG19, DCAE 图像 CBIS-DDSM和MIAS数据集
2048 2025-01-23
Mfgnn: Multi-Scale Feature-Attentive Graph Neural Networks for Molecular Property Prediction
2025-Jan-30, Journal of computational chemistry IF:3.4Q2
研究论文 本文提出了一种多尺度特征注意力图神经网络(MfGNN),用于分子属性预测,通过结合片段级表示来增强传统的基于原子的分子图表示 MfGNN不仅有效捕捉分子结构和功能基团特征,还特别关注片段之间的潜在关系,探索它们如何共同影响分子属性 NA 提高分子属性预测的准确性,特别是在药物发现领域 分子结构和功能基团 机器学习 NA 图神经网络(GNN) MfGNN 分子图数据 NA
2049 2025-01-23
Two-Dimensional Transition Metal Dichalcogenides: A Theory and Simulation Perspective
2025-Jan-22, Chemical reviews IF:51.4Q1
综述 本文综述了二维过渡金属二硫化物(2D TMDs)在理论模拟方面的研究进展及其在电子学、催化、量子技术和能源领域的应用 强调了理论模拟在理解2D TMDs物理性质、发现新材料、阐明合成过程及设计新型器件中的关键作用 尽管2D TMDs展示了潜力并已制造出原型器件,但仍需解决一些挑战以实现其商业应用 探讨理论模拟如何推动2D TMDs研究,特别是在理解扭曲moire基TMDs性质、预测TMD单层和异质结构中的奇异量子相、理解TMD合成中的成核和生长过程以及理解基于TMD异质结构的潜在器件中的电子传输和接触特性方面 二维过渡金属二硫化物(2D TMDs) 材料科学 NA 理论模拟、深度学习、分子动力学、高通量计算、多尺度方法 NA NA NA
2050 2025-01-23
Gait patterns in unstable older patients related with vestibular hypofunction. Preliminary results in assessment with time-frequency analysis
2025-Jan-22, Acta oto-laryngologica IF:1.2Q3
研究论文 本文通过单传感器收集的数据图像表示,寻找老年人与前庭功能减退相关的步态不稳定模式 使用连续小波变换生成步态信号的图像表示,并通过灰度共生矩阵度量作为特征进行分析,利用支持向量机(SVM)算法进行受试者分类 样本量较小,仅包含13名老年人和19名成年人,且为初步结果,需要更大样本和深度学习方法的进一步探索 寻找老年人步态不稳定的模式,以早期诊断步态障碍 13名71-85岁的前庭功能减退导致不稳定的老年人和19名21-75岁无不稳定且前庭功能正常的成年人 数字病理学 老年疾病 连续小波变换,灰度共生矩阵度量 支持向量机(SVM) 图像 32名受试者(13名老年人和19名成年人)
2051 2025-01-23
PBCS-ConvNeXt: Convolutional Network-Based Automatic Diagnosis of Non-alcoholic Fatty Liver in Abdominal Ultrasound Images
2025-Jan-22, Journal of imaging informatics in medicine
研究论文 本文提出了一种基于深度学习的计算机辅助诊断模型PBCS-ConvNeXt,用于自动分类非酒精性脂肪肝病的腹部超声图像 提出了PBCS-ConvNeXt模型,结合了potent stem cell模块、增强的ConvNeXt Blocks和boosting block,用于从超声数据中提取有效信息 模型的准确率、敏感性和特异性分别为82%、81%和83%,仍有提升空间 开发一种自动化的非酒精性脂肪肝病分类系统,以辅助早期诊断和临床管理 非酒精性脂肪肝病(NAFLD)的腹部超声图像 计算机视觉 非酒精性脂肪肝病 深度学习 PBCS-ConvNeXt 图像 使用5折交叉验证进行评估,具体样本数量未明确
2052 2025-01-23
Deep learning-based detection of incisal translucency patterns
2025-Jan-20, The Journal of prosthetic dentistry IF:4.3Q1
研究论文 本研究评估了深度学习模型在预测前牙透明度模式中的准确性,采用YOLOv5、Vision Transformers (ViT)和U-Net三种模型进行检测、分类和分割 首次将YOLOv5、Vision Transformers (ViT)和U-Net三种深度学习模型结合,用于前牙透明度模式的检测、分类和分割,提供了一种全面的解决方案 研究样本量较小,仅包含240张前牙图像,且所有图像均来自18岁以上的参与者,可能限制了模型的泛化能力 评估深度学习模型在前牙透明度模式检测中的准确性,以辅助牙医在修复牙科实践中的决策 前牙的透明度模式 计算机视觉 NA 深度学习 YOLOv5, Vision Transformers (ViT), U-Net 图像 240张前牙JPEG图像
2053 2025-01-23
Secure channel estimation model for cognitive radio network physical layer security using two-level shared key authentication
2025-Jan-19, Scientific reports IF:3.8Q1
研究论文 本文提出了一种使用信道状态信息(CSI)和深度学习(DL)的安全信道估计模型(SCEM),以提高认知无线电网络(CRN)中的物理层安全性(PLS) 该模型通过两级共享密钥认证和深度学习算法,提高了信道容量利用率和安全性,减少了干扰率 未明确提及具体限制 提高认知无线电网络中的物理层安全性 认知无线电网络中的用户和设备 机器学习 NA 深度学习 深度学习算法 信道状态信息(CSI) 未明确提及样本数量
2054 2025-01-23
A small underwater object detection model with enhanced feature extraction and fusion
2025-Jan-18, Scientific reports IF:3.8Q1
研究论文 本文提出了一种高效的小型水下物体检测模型,通过增强特征提取和融合来解决水下环境中小物体检测的挑战 引入了CSPSL模块增强特征保留,提出了VKConv动态调整卷积核大小,以及SPPFMS方法更有效地保留小物体特征 未提及模型在更复杂或不同水下环境中的泛化能力 提高水下环境中小物体检测的准确性和计算效率 水下环境中的小物体 计算机视觉 NA 深度学习 深度卷积网络 图像 UDD和DUO数据集
2055 2025-01-23
The first geospatial dataset of irrigated fields (2020-2024) in Vojvodina (Serbia)
2025-Jan-18, Scientific data IF:5.8Q1
研究论文 本文创建了一个关于塞尔维亚伏伊伏丁那地区2020-2024年灌溉田地的地理空间数据集,旨在支持可持续水资源管理、农业发展和环境保护 首次创建了包含地理位置、作物类型和灌溉设备信息的区域灌溉田地数据集,为机器学习模型提供高质量训练数据 数据收集成本高且劳动密集,数据集仅覆盖伏伊伏丁那地区 提供可访问的灌溉田地数据集,用于构建或微调机器学习和深度学习模型,以自动检测灌溉田地 伏伊伏丁那地区的灌溉田地 地理信息系统 NA 卫星影像分析 机器学习和深度学习模型 地理空间数据 1256块田地
2056 2025-01-23
Multiscale wildfire and smoke detection in complex drone forest environments based on YOLOv8
2025-Jan-18, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于改进YOLOv8的模型,用于复杂无人机森林环境中的多尺度野火和烟雾检测 在C2F模块中使用局部卷积代替全卷积,并集成EMA模块以增强特征通道交互建模能力和上下文信息利用,同时在Backbone中引入AgentAttention模块优化特征提取,设计BiFormer模块自适应融合全局和局部特征,显著提升模型的多尺度和多角度检测能力 未提及具体局限性 提高森林火灾和烟雾检测的准确性和效率,支持森林火灾预警、应急响应和损失减少 森林火灾和烟雾 计算机视觉 NA 深度学习 YOLOv8 图像 未提及具体样本数量
2057 2025-01-23
Fusing multispectral information for retinal layer segmentation
2025-Jan-17, NPJ digital medicine IF:12.4Q1
研究论文 本文研究了多光谱信息(MSI)对视网膜层分割(RLS)的影响,并展示了将MSI整合到RLS方法中如何显著提高分割精度 首次研究了多光谱信息对视网膜层分割的影响,并展示了其在提高分割精度方面的潜力 研究主要依赖于光学相干断层扫描(OCT)图像,未涉及其他类型的医学影像 探索多光谱信息对视网膜层分割的影响,并提高分割精度 视网膜层光学相干断层扫描(OCT)图像 计算机视觉 眼科疾病 光学相干断层扫描(OCT) 深度学习(DL) 图像 NA
2058 2025-01-23
Assessing greenspace and cardiovascular health through deep-learning analysis of street-view imagery in a cohort of US children
2025-Jan-15, Environmental research IF:7.7Q1
研究论文 本研究通过深度学习分析美国儿童的街景图像,评估绿地与心血管健康之间的关系 利用深度学习分割算法从街景图像中提取绿地指标,并结合儿童成长阶段的心血管健康数据进行关联分析 未发现绿地指标与儿童心血管健康之间的显著纵向关联,且影响可能随儿童成长阶段变化 评估街景绿地与儿童心血管健康之间的关系 美国儿童 计算机视觉 心血管疾病 深度学习分割算法 NA 图像 Project Viva队列中的儿童,从2007年至2021年跟踪
2059 2025-01-23
Human-Validated Neural Networks for Precise Amastigote Categorization and Quantification to Accelerate Drug Discovery in Leishmaniasis
2025-Jan-14, ACS omega IF:3.7Q2
研究论文 本研究旨在实现和验证YOLOv8深度学习模型,用于实时检测、量化和分类利什曼原虫无鞭毛体,以增强药物筛选实验 使用YOLOv8模型进行利什曼原虫无鞭毛体的实时检测和分类,相比传统显微镜方法更高效且减少了人为误差 在区分细胞外无鞭毛体和背景噪声方面存在挑战,需要进一步改进以减少误分类问题 提高利什曼病药物筛选实验的准确性和效率 利什曼原虫无鞭毛体 计算机视觉 利什曼病 深度学习 YOLOv8 图像 470张来自两台显微镜的图像
2060 2025-01-23
Quantifying Monomer-Dimer Distribution of Nanoparticles from Uncorrelated Optical Images Using Deep Learning
2025-Jan-14, ACS omega IF:3.7Q2
研究论文 本文提出了一种基于深度学习的集成方法,用于从光学图像中自动检测和量化聚合物基质中的纳米颗粒及其寡聚化状态 使用光学图像而非传统的SEM或TEM图像进行纳米颗粒检测和寡聚化状态量化,克服了传统方法的破坏性限制 光学图像易受噪声、低对比度、各向异性形状、点扩散函数重叠、等离子体耦合和分辨率限制的影响 开发一种基于光学图像的纳米颗粒检测和寡聚化状态量化方法,以促进纳米技术、材料科学和生物医学研究的发展 80纳米金纳米球(AuNSs)及其在聚合物基质中的分布和寡聚化状态 计算机视觉 NA 深度学习 YOLOv8 光学图像 80纳米金纳米球(AuNSs)的光学和SEM图像数据集
回到顶部