深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202501] [清除筛选条件]
当前共找到 3218 篇文献,本页显示第 2101 - 2120 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
2101 2025-03-14
Advancements in the application of artificial intelligence in the field of colorectal cancer
2025, Frontiers in oncology IF:3.5Q2
研究论文 本文探讨了人工智能在结直肠癌领域的应用进展 利用机器学习和深度学习算法,提高结直肠癌的早期检测、诊断和治疗效果 未具体提及研究的局限性 探索人工智能在结直肠癌管理中的潜力 结直肠癌患者 机器学习 结直肠癌 机器学习和深度学习算法 深度学习(DL) 医疗数据 NA NA NA NA NA
2102 2025-03-14
Deep learning model for the early prediction of pathologic response following neoadjuvant chemotherapy in breast cancer patients using dynamic contrast-enhanced MRI
2025, Frontiers in oncology IF:3.5Q2
研究论文 本研究旨在探讨不同深度学习方法在DCE-MRI上的诊断准确性,为预测乳腺癌患者新辅助化疗(NAC)后的病理反应提供一个简单易用的工具 利用多种深度学习框架进行迁移学习,结合多种机器学习技术构建分类模型,成功开发出性能最佳的DLR模型,用于预测乳腺癌患者NAC后的病理反应 研究样本量有限,仅包括313名乳腺癌患者,且所有患者均来自单一机构,可能影响模型的泛化能力 开发一个基于DCE-MRI的深度学习模型,用于早期预测乳腺癌患者NAC后的病理反应 313名乳腺癌患者 计算机视觉 乳腺癌 DCE-MRI ViT, VGG16, ShuffleNet_v2, ResNet18, MobileNet_v2, MnasNet-0.5, GoogleNet, DenseNet121, AlexNet, SVM, KNN, RandomForest, ExtraTrees, XGBoost, LightGBM, MLP 图像 313名乳腺癌患者 NA NA NA NA
2103 2025-03-14
Data augmented lung cancer prediction framework using the nested case control NLST cohort
2025, Frontiers in oncology IF:3.5Q2
研究论文 本研究探讨了在肺癌筛查中使用数据增强技术来提高深度学习模型的预测性能 全面评估了多种数据增强方法在肺癌预测中的应用,并发现传统方法在某些情况下优于最新的在线数据增强技术 研究仅基于253名个体的CT扫描数据,样本量相对较小 评估数据增强技术在肺癌筛查中的有效性 253名个体的CT扫描数据 计算机视觉 肺癌 数据增强技术 3D深度学习模型 CT扫描图像 253名个体的CT扫描数据 NA NA NA NA
2104 2025-03-13
Diagnostic accuracy of artificial intelligence models in detecting congenital heart disease in the second-trimester fetus through prenatal cardiac screening: a systematic review and meta-analysis
2025, Frontiers in cardiovascular medicine IF:2.8Q2
系统综述与荟萃分析 本文通过系统综述和荟萃分析评估了人工智能模型在产前心脏筛查中检测胎儿先天性心脏病的诊断准确性 首次系统评估人工智能模型在胎儿先天性心脏病筛查中的表现,并进行了荟萃分析 研究样本量有限,且需要更大数据集和更多样化人群的前瞻性研究来验证结果 评估人工智能模型在产前心脏筛查中检测先天性心脏病的诊断准确性 胎儿先天性心脏病 医学影像分析 先天性心脏病 超声和超声心动图 深度学习模型 图像 9项研究,共374项研究筛选 NA NA NA NA
2105 2025-03-13
Advancements in cache management: a review of machine learning innovations for enhanced performance and security
2025, Frontiers in artificial intelligence IF:3.0Q2
review 本文综述了机器学习在缓存管理中的应用,包括优化缓存性能和增强安全性 探讨了从基于强化学习的缓存替换策略到LSTM模型预测内容特性以做出缓存决策的多种机器学习技术 未提及具体实验数据或样本量,可能缺乏实证支持 研究机器学习在缓存管理中的应用,以优化性能和增强安全性 缓存管理系统 machine learning NA reinforcement learning, LSTM, imitation learning, neural networks LSTM, neural networks NA NA NA NA NA NA
2106 2025-10-07
AI-powered innovations in pancreatitis imaging: a comprehensive literature synthesis
2025-01, Abdominal radiology (New York)
综述 本文综述了人工智能在胰腺炎影像学诊断中的创新应用与发展前景 系统整合了定量影像学与深度学习模型在胰腺炎非侵入性诊断中的最新进展 未涉及具体临床验证数据和研究方法细节 改善胰腺炎的早期检测和临床管理 胰腺炎影像学数据 医学影像分析 胰腺炎 定量影像学,深度学习 深度学习模型 医学影像 NA NA NA NA NA
2107 2025-10-07
Automated Deep Learning-Based Finger Joint Segmentation in 3-D Ultrasound Images With Limited Dataset
2025-01, Ultrasonic imaging IF:2.5Q2
研究论文 提出基于深度学习的自动化方法,用于在有限数据集下从3D超声图像中分割类风湿关节炎患者指关节滑膜 在有限标注数据情况下开发自动化滑膜分割方法,并采用多种数据增强策略提升模型性能 数据集规模有限(仅18个3D超声体积,来自9名患者),且标注稀疏 开发自动化工具以改进类风湿关节炎的超声筛查工作流程 类风湿关节炎患者的指关节滑膜 计算机视觉 类风湿关节炎 超声成像 CNN 3D超声图像 18个3D超声体积(来自9名RA患者) NA NA Dice系数 NA
2108 2025-10-07
CBAM-RIUnet: Breast Tumor Segmentation With Enhanced Breast Ultrasound and Test-Time Augmentation
2025-01, Ultrasonic imaging IF:2.5Q2
研究论文 提出CBAM-RIUnet深度学习模型用于乳腺超声图像中的肿瘤自动分割 结合卷积块注意力模块与残差初始深度可分离卷积的Unet结构,通过注意力机制消除无关特征并聚焦感兴趣区域 NA 提高乳腺超声图像中肿瘤分割的精确度 乳腺超声图像中的肿瘤区域 计算机视觉 乳腺癌 超声成像 CNN 图像 NA NA U-Net, CBAM-RIUnet Dice系数, IoU NA
2109 2025-03-12
Contrastive self-supervised learning for neurodegenerative disorder classification
2025, Frontiers in neuroinformatics IF:2.5Q3
研究论文 本文探讨了对比自监督学习在神经退行性疾病分类中的应用,特别是阿尔茨海默病(AD)和额颞叶变性(FTLD)的分类 使用对比自监督学习方法训练深度学习模型,无需大量标注数据,且模型表现与最先进的监督学习方法相当 需要进一步验证在更大规模和多样化的数据集上的泛化能力 研究自监督学习模型在神经退行性疾病分类中的应用及其可解释性 阿尔茨海默病(AD)和额颞叶变性(FTLD)患者及认知正常对照组(CN)的T1加权MRI扫描数据 计算机视觉 神经退行性疾病 对比自监督学习 深度卷积神经网络(CNN) T1加权MRI扫描图像 2,694个T1加权MRI扫描样本,来自四个数据集:ADNI、AIBL和FTLDNI NA NA NA NA
2110 2025-03-12
Using machine learning models for cuffless blood pressure estimation with ballistocardiogram and impedance plethysmogram
2025, Frontiers in digital health IF:3.2Q2
研究论文 本文探讨了利用机器学习模型通过心冲击图和阻抗体积描记图进行无袖带血压估计的方法 提出了一种结合一维卷积神经网络(1D CNN)和门控循环单元(GRU)的堆叠模型,用于分类心冲击图和阻抗体积描记图信号的质量,并使用随机森林(RF)和XGBoost模型估计血压 研究仅涉及17名健康受试者,样本量较小,且血压升高是通过运动实现的,可能不适用于所有人群 提高无袖带血压测量的准确性,以适用于移动健康(mHealth)应用 心冲击图(BCG)和阻抗体积描记图(IPG)信号 机器学习 心血管疾病 深度学习,机器学习 1D CNN, GRU, 随机森林(RF), XGBoost 信号数据 17名健康受试者 NA NA NA NA
2111 2025-03-11
A novel approach to Indian bird species identification: employing visual-acoustic fusion techniques for improved classification accuracy
2025, Frontiers in artificial intelligence IF:3.0Q2
研究论文 本文提出了一种新颖的视觉-声学融合技术,用于提高印度鸟类物种识别的准确性 采用视觉-声学融合技术,结合DCNN和LSTM网络,显著提高了物种识别的准确性 NA 提高印度鸟类物种识别的准确性,以支持生物多样性监测和生态保护 印度鸟类物种 计算机视觉 NA 视觉-声学融合技术 DCNN, LSTM 图像, 声音 iBC53(印度鸟鸣)数据集 NA NA NA NA
2112 2025-03-12
Leveraging deep learning for plant disease and pest detection: a comprehensive review and future directions
2025, Frontiers in plant science IF:4.1Q1
综述 本文综述了深度学习在植物病害和害虫检测中的应用,探讨了其挑战、机遇及未来发展方向 深入分析了深度学习在植物病害和害虫检测中的最新进展,并预测了未来研究方向 未提及具体实验数据或样本量,主要基于现有研究的总结和分析 探讨深度学习在农业诊断中的应用,特别是植物病害和害虫检测 植物病害和害虫 计算机视觉 NA 深度学习 分类、检测和分割网络 图像 NA NA NA NA NA
2113 2025-03-12
Leveraging a hybrid convolutional gated recursive diabetes prediction and severity grading model through a mobile app
2025, PeerJ. Computer science
研究论文 本文提出了一种新型的深度学习机制——卷积门控递归单元(CGRU),用于糖尿病的早期检测和严重程度分级,并通过移动应用实现 提出了一种新的深度学习技术CGRU,通过从数据中提取时空特征来提高预测准确性,并利用聚类算法对患者进行分类以确定糖尿病的严重程度 研究仅限于在单一数据集上进行,缺乏对多样化数据集的验证 提高糖尿病早期检测和严重程度分级的准确性和可靠性 糖尿病患者 机器学习 糖尿病 深度学习 CGRU(卷积门控递归单元) 结构化数据 BRFSS数据集 NA NA NA NA
2114 2025-03-12
Lung image segmentation with improved U-Net, V-Net and Seg-Net techniques
2025, PeerJ. Computer science
研究论文 本研究提出了基于U-Net、V-Net和Seg-Net架构的三种分割模型,以提高肺结核检测的准确性 通过采用先进的预处理技术、注意力机制和非局部块,提升了分割精度 未提及模型在实际临床环境中的验证情况 提高肺结核的准确诊断 肺结核的肺部图像 计算机视觉 肺结核 深度学习 U-Net, V-Net, Seg-Net 图像 Shenzhen和Montgomery数据库中的样本 NA NA NA NA
2115 2025-03-12
A systematic review of deep learning techniques for apple leaf diseases classification and detection
2025, PeerJ. Computer science
系统综述 本文系统回顾了深度学习技术在苹果叶病分类和检测中的应用 对2016年至2024年间发表的45篇相关文章进行了系统分析,评估了该领域的最新发展、方法和研究需求 仅限于分析已发表的文章,未涉及未发表或正在进行的研究 准确及时地诊断苹果叶病,以减少产量损失和经济影响 苹果叶病 计算机视觉 苹果叶病 深度学习 NA 图像 45篇文章 NA NA NA NA
2116 2025-03-12
Lightweight-CancerNet: a deep learning approach for brain tumor detection
2025, PeerJ. Computer science
研究论文 本文提出了一种名为Lightweight-CancerNet的深度学习架构,用于高效准确地检测脑肿瘤 提出了一种新的深度学习架构Lightweight-CancerNet,结合MobileNet和NanoDet,实现了高精度和低计算资源需求 未提及具体局限性 开发一种高效且准确的脑肿瘤检测方法 脑肿瘤 计算机视觉 脑肿瘤 深度学习 MobileNet, NanoDet 磁共振成像(MRI)图像 两个MRI数据集 NA NA NA NA
2117 2025-03-12
Classification of sleep apnea syndrome using the spectrograms of EEG signals and YOLOv8 deep learning model
2025, PeerJ. Computer science
研究论文 本研究利用从多导睡眠图(PSG)记录中获取的脑电图(EEG)信号的频谱图,以及YOLOv8深度学习模型,对睡眠呼吸暂停综合征进行分类 使用YOLOv8模型进行四分类(轻度、中度、重度呼吸暂停及健康),填补了现有文献中关于四分类EEG信号分类参数减少方法的空白,并减少了模型参数数量 现有文献中关于四分类EEG信号分类的参数减少方法尚未充分探讨,存在局限性 分类睡眠呼吸暂停综合征,并评估参数减少方法在EEG分类中的性能 从PSG记录中获取的EEG信号 机器学习 睡眠呼吸暂停综合征 短时傅里叶变换(STFT) YOLOv8 图像(频谱图) 未明确提及样本数量 NA NA NA NA
2118 2025-03-12
AI augmented edge and fog computing for Internet of Health Things (IoHT)
2025, PeerJ. Computer science
综述 本文探讨了人工智能增强的边缘和雾计算在健康物联网(IoHT)中的应用,旨在满足现代医疗系统对实时健康数据收集和分析的需求 结合人工智能技术,提出了边缘和雾计算在健康物联网中的应用,并探讨了资源管理、低延迟和安全性等关键要素 未提及具体的技术实现细节和实验验证 研究边缘和雾计算架构及其在健康物联网中的应用,以满足实时健康数据收集和分析的需求 健康物联网(IoHT)系统及其相关技术 物联网 NA 人工智能、深度学习、5G、统一通信即服务(UCaaS)、窄带物联网(NB-IoT)、区块链技术 NA 健康数据 NA NA NA NA NA
2119 2025-03-12
Enhancing breast cancer prediction through stacking ensemble and deep learning integration
2025, PeerJ. Computer science
研究论文 本研究通过集成模型和深度学习模型的堆叠集成技术,评估并提升了乳腺癌诊断的准确性 创新点在于将多种集成方法(如Random Forest、XGBoost等)与深度学习模型(如CNN、RNN等)结合,使用堆叠集成方法提升乳腺癌预测的准确性 研究仅基于Breast Cancer Wisconsin (Diagnostic)数据集,未在其他数据集上验证模型的泛化能力 提升乳腺癌诊断的准确性,为医疗决策支持系统提供高精度的预测模型 乳腺癌诊断 机器学习 乳腺癌 堆叠集成技术 CNN, RNN, GRU, BILSTM, LSTM, Random Forest, XGBoost, LightGBM, ExtraTrees, HistGradientBoosting, AdaBoost, GradientBoosting, CatBoost 医疗数据 Breast Cancer Wisconsin (Diagnostic)数据集 NA NA NA NA
2120 2025-03-12
Deep learning-based novel ensemble method with best score transferred-adaptive neuro fuzzy inference system for energy consumption prediction
2025, PeerJ. Computer science
研究论文 本文提出了一种基于深度学习的集成方法,结合最佳分数转移自适应神经模糊推理系统(BST-ANFIS),用于能源消耗预测 提出了一种新的集成方法,结合了多种深度学习算法和BST-ANFIS架构,通过最佳分数转移方法增强了模型的鲁棒性和动态预测能力 未提及具体局限性 开发一种高性能且鲁棒的能源消耗预测方法 智能家居和城市的能源消耗数据 机器学习 NA 深度学习、自适应神经模糊推理系统 CNN, RNN, LSTM, BI-LSTM, GRU, BST-ANFIS 时间序列数据 三个数据集:基于物联网的智能家居(IBSH)、家园城市电力消耗(HCEC)、个人家庭电力消耗(IHPC) NA NA NA NA
回到顶部