本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2101 | 2025-02-14 |
Detection of Masses in Mammogram Images Based on the Enhanced RetinaNet Network With INbreast Dataset
2025, Journal of multidisciplinary healthcare
IF:2.7Q2
DOI:10.2147/JMDH.S493873
PMID:39935433
|
研究论文 | 本文提出了一种基于增强RetinaNet网络的乳腺X光图像肿块检测方法,旨在提高计算机辅助诊断的效率和准确性 | 在RetinaNet网络结构中引入ReLU函数处理特征图M5,以防止小肿块特征的分辨率损失,并采用迁移学习技术进行模型训练 | 研究仅基于INbreast数据集进行验证,未在其他数据集上测试模型的泛化能力 | 提高乳腺X光图像中肿块的检测准确率,减少假阳性和假阴性 | 乳腺X光图像中的肿块 | 计算机视觉 | 乳腺癌 | 深度学习 | RetinaNet | 图像 | INbreast数据集 |
2102 | 2025-02-14 |
Diagnosis of depression based on facial multimodal data
2025, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2025.1508772
PMID:39935533
|
研究论文 | 本研究提出了一种基于面部视频和音频数据的深度学习方法来自动诊断抑郁症 | 通过融合多模态数据,使用时空注意力模块增强视觉特征提取,并结合GCN和LSTM分析音频特征,有效捕捉与抑郁症相关的不同特征模式 | NA | 开发基于客观指标的自动诊断工具,以解决传统量表诊断方法的主观性强和误诊率高的问题 | 抑郁症患者 | 机器学习 | 抑郁症 | 深度学习 | GCN, LSTM | 面部视频, 音频数据 | 公开的临床数据集E-DAIC |
2103 | 2025-02-14 |
Mapping knowledge landscapes and emerging trends in artificial intelligence for antimicrobial resistance: bibliometric and visualization analysis
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1492709
PMID:39935800
|
研究论文 | 本文通过文献计量学分析,系统地绘制了人工智能在抗菌素耐药性研究中的应用知识图谱和发展趋势 | 整合了多种文献计量学方法,包括VOSviewer、CiteSpace和定量分析,以可视化合作网络和研究集群,并分析时间演变 | 数据来源仅限于Web of Science核心合集数据库,可能未涵盖所有相关研究 | 提供基于证据的见解,指导未来研究方向,并为这一动态领域的战略决策提供信息 | 2014年至2024年期间发表的关于人工智能在抗菌素耐药性研究中应用的出版物 | 机器学习 | 抗菌素耐药性 | 文献计量学分析、VOSviewer、CiteSpace | 人工神经网络、图神经网络 | 文献数据 | 2,408篇出版物 |
2104 | 2025-02-14 |
DPD-YOLO: dense pineapple fruit target detection algorithm in complex environments based on YOLOv8 combined with attention mechanism
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1523552
PMID:39935949
|
研究论文 | 本文提出了一种基于YOLOv8并结合注意力机制的DPD-YOLO算法,用于复杂环境下的菠萝果实目标检测 | DPD-YOLO算法引入了注意力机制(Coordinate Attention)和BiFPN(双向特征金字塔网络),并替换了YOLOv8的检测头为RT-DETR检测头,结合了Cross-Attention和Self-Attention机制,显著提高了模型在复杂背景和遮挡情况下的检测精度 | NA | 提高复杂环境下菠萝果实目标检测的准确性 | 菠萝果实 | 计算机视觉 | NA | NA | YOLOv8, DPD-YOLO, RT-DETR | 图像 | NA |
2105 | 2025-02-14 |
Dual-stream disentangled model for microvascular extraction in five datasets from multiple OCTA instruments
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1542737
PMID:39944497
|
研究论文 | 本文提出了一种新颖的双流解耦网络(D2Net),用于视网膜OCTA微血管分割,有效减少了不同成像仪器带来的噪声和伪影干扰 | 提出了一种双流编码器,分别学习图像伪影和潜在血管特征,通过引入血管结构作为先验约束和构建辅助信息,实现了解耦表示学习 | 尽管在多个数据集上验证了方法的鲁棒性和泛化能力,但仍需进一步验证其在更广泛临床环境中的适用性 | 提高视网膜OCTA微血管分割的准确性,减少噪声和伪影的干扰 | 视网膜OCTA图像中的微血管 | 计算机视觉 | 眼科疾病 | OCTA成像技术 | 双流解耦网络(D2Net) | 图像 | 五个数据集(包括FOCA、OCTA-500、ROSE-O、ROSE-Z和ROSE-H),数据来自不同仪器 |
2106 | 2025-02-14 |
Magnetic resonance imaging-based deep learning for predicting subtypes of glioma
2025, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2025.1518815
PMID:39944539
|
研究论文 | 本研究探讨了基于磁共振成像(MRI)的深度学习在胶质瘤亚型分类中的应用价值 | 开发了一套能够有效分类胶质瘤亚型的模型,并发现仅包含FLAIR序列的模型效果最佳 | 研究样本主要来自公开数据库和单一医院,可能存在样本选择偏差 | 探索基于MRI的深度学习在胶质瘤亚型分类中的应用 | 747名来自公开数据库和64名来自医院的经手术病理证实的胶质瘤成年患者 | 计算机视觉 | 胶质瘤 | 磁共振成像(MRI) | 深度学习 | 图像 | 811名患者(747名来自公开数据库,64名来自医院) |
2107 | 2025-02-14 |
Modeling dose uncertainty in cone-beam computed tomography: Predictive approach for deep learning-based synthetic computed tomography generation
2025-Jan, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100704
PMID:39944778
|
研究论文 | 本研究提出了一种基于深度学习的合成CT生成方法,用于评估锥形束CT(CBCT)中的剂量不确定性 | 引入了与合成CT和CT之间误差相关的体素级不确定性估计器,并提出了一种通过定义CT剂量-体积直方图(DVH)周围的置信区间来估计剂量不确定性的新方法 | 研究样本主要来自单一中心的头颈部患者,且仅测试了少量来自其他中心的患者,可能限制了方法的普适性 | 提高CBCT在图像引导放疗中的剂量计算准确性 | 头颈部癌症患者 | 计算机视觉 | 头颈部癌症 | 深度学习 | NA | 医学影像 | 85名头颈部患者(主要来自单一中心),外加3名来自不同中心的患者 |
2108 | 2025-02-14 |
Association between the subclinical level of problematic internet use and habenula volume: a look at mediation effect of neuroticism
2025, General psychiatry
IF:5.3Q1
DOI:10.1136/gpsych-2024-101694
PMID:39944777
|
研究论文 | 本研究探讨了亚临床水平的问题性互联网使用(PIU)与缰核体积之间的关系,以及神经质在这一关系中的中介作用 | 首次揭示了缰核体积减少与PIU增加之间的关键联系,并发现神经质是PIU发展的关键风险因素,且在其中起中介作用 | 研究为横断面设计,无法确定因果关系;样本量相对较小 | 探讨亚临床PIU与缰核体积的关系及人格特质的中介作用 | 110名健康成年人 | 神经科学 | 精神疾病 | 结构磁共振成像,深度学习技术 | 深度学习 | 图像,问卷数据 | 110名健康成年人 |
2109 | 2025-02-13 |
Deep learning CT image restoration using system blur and noise models
2025-Jan, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.12.1.014003
PMID:39906485
|
研究论文 | 本文提出了一种结合系统模糊和噪声模型的深度学习CT图像恢复方法 | 该方法不仅利用退化的图像输入,还结合了系统的模糊和噪声特性,通过输入变异和权重变异两种方法将辅助输入整合到卷积神经网络中 | 当模糊和噪声参数偏离其真实值时,模型的鲁棒性可能有限 | 提高CT图像恢复的质量 | 受模糊和噪声影响的CT图像 | 计算机视觉 | NA | 深度学习 | 卷积神经网络(CNN) | 图像 | NA |
2110 | 2025-02-12 |
The Future of Breast Cancer Diagnosis in Japan with AI and Ultrasonography
2025-Jan-15, JMA journal
IF:1.5Q2
DOI:10.31662/jmaj.2024-0183
PMID:39926065
|
综述 | 本文探讨了人工智能(AI)在日本乳腺癌诊断中的应用,特别是在超声成像中的关键进展 | 介绍了AI在乳腺超声诊断中的最新应用,包括由日本药品医疗器械管理局批准的AI辅助诊断程序 | AI在乳腺癌诊断中的应用仍面临患者接受度和环境影响等挑战,需要医生负责任地监督其使用 | 提高乳腺癌诊断的准确性和效率 | 乳腺癌患者 | 数字病理学 | 乳腺癌 | 超声成像 | 机器学习和深度学习 | 图像 | NA |
2111 | 2025-02-12 |
Use of AI in Diagnostic Imaging and Future Prospects
2025-Jan-15, JMA journal
IF:1.5Q2
DOI:10.31662/jmaj.2024-0169
PMID:39926072
|
研究论文 | 本文探讨了人工智能在医学影像诊断中的应用及其未来前景 | 利用AI构建三维模型进行手术模拟和导航,提高手术精度和护理质量 | 未提及具体的技术局限或数据限制 | 研究AI在医学影像诊断中的应用及其对医疗实践的改进 | 术前影像数据、电子病历、疾病进展和并发症预测 | 数字病理 | NA | 深度学习、自然语言处理 | NA | 影像数据、文本数据 | NA |
2112 | 2025-02-12 |
Clinical Prospects for Artificial Intelligence in Obstetrics and Gynecology
2025-Jan-15, JMA journal
IF:1.5Q2
DOI:10.31662/jmaj.2024-0197
PMID:39926075
|
综述 | 本文综述了人工智能在妇产科领域的最新研究进展,包括围产期、生殖和妇科癌症等方面的应用 | 总结了人工智能在妇产科多个子领域的最新应用,如胎儿异常诊断、辅助生殖技术效率提升及妇科癌症的诊断与预后预测 | 涉及个人信息的处理、缺乏相关法律法规以及透明度问题 | 探讨人工智能在妇产科领域的临床应用前景 | 围产期、生殖和妇科癌症 | 医疗人工智能 | 妇科疾病 | 深度学习 | NA | 医学影像(如超声波、MRI)、组织病理学数据 | NA |
2113 | 2025-02-12 |
Deep Learning Applications in 12-lead Electrocardiogram and Echocardiogram
2025-Jan-15, JMA journal
IF:1.5Q2
DOI:10.31662/jmaj.2024-0195
PMID:39926090
|
综述 | 本文综述了深度学习技术在12导联心电图和超声心动图中的应用及其在心血管医学领域的潜力 | 探讨了AI模型在心血管疾病筛查和机制研究中的创新应用,如通过单次心电图或超声心动图准确识别心肌病和先天性心脏病 | 未具体提及研究的局限性 | 更新AI在心电图和超声心动图中的应用成就,并展望AI在心血管护理和研究中的未来方向 | 心电图(ECG)和超声心动图数据 | 机器学习 | 心血管疾病 | 深度学习 | NA | 时间序列数据、图像数据 | NA |
2114 | 2025-02-12 |
Pathology Foundation Models
2025-Jan-15, JMA journal
IF:1.5Q2
DOI:10.31662/jmaj.2024-0206
PMID:39926091
|
研究论文 | 本文探讨了病理学中基础模型(FMs)的应用及其在医疗领域的潜力 | 介绍了大规模AI模型(基础模型)在病理学中的新兴应用,包括疾病诊断、患者生存预后预测等 | 基础模型在临床应用中的挑战仍需解决 | 探讨基础模型在病理学中的应用及其对精准和个性化医疗的促进作用 | 病理学中的基础模型及其在医疗领域的应用 | 数字病理学 | NA | 深度学习 | 基础模型(FMs) | 图像 | NA |
2115 | 2025-02-12 |
Assessing the efficiency of pixel-based and object-based image classification using deep learning in an agricultural Mediterranean plain
2025-Jan-10, Environmental monitoring and assessment
IF:2.9Q3
DOI:10.1007/s10661-024-13431-2
PMID:39792312
|
研究论文 | 本研究比较了基于像素和基于对象的图像分类方法在Sentinel-2卫星影像中使用Deeplabv3深度学习方法的效率 | 通过高通过滤器增强图像清晰度,并结合Deeplabv3深度学习模型,评估了基于像素和基于对象分类方法的效率 | 研究结果依赖于训练数据的质量,且仅针对地中海平原的农业环境 | 评估基于像素和基于对象的图像分类方法在卫星影像解释中的效率 | Sentinel-2卫星影像 | 计算机视觉 | NA | 深度学习 | Deeplabv3 | 卫星影像 | NA |
2116 | 2025-02-12 |
Drawing as a means to characterize memory and cognition
2025-Jan, Memory & cognition
IF:2.2Q2
DOI:10.3758/s13421-024-01618-4
PMID:39192141
|
研究论文 | 本文探讨了绘画作为研究记忆和认知的工具,展示了其在心理学研究中的应用 | 绘画作为一种自然主义的研究工具,提供了从感知表达到元认知表达的丰富信息,并揭示了多种认知过程的整合 | NA | 探讨绘画在心理学研究中的应用,揭示其对记忆、注意力、数学推理等认知过程的影响 | 儿童、年轻人、老年人以及特殊人群(如盲人、顺行性遗忘症患者、失用症患者和语义性痴呆患者) | 心理学 | NA | 心理物理学实验、深度学习、神经影像学 | NA | NA | 25项研究,涉及不同年龄段和特殊人群 |
2117 | 2025-02-12 |
The Efficacy of Artificial Intelligence in the Detection and Management of Atrial Fibrillation
2025-Jan, Cureus
DOI:10.7759/cureus.77135
PMID:39925585
|
系统综述 | 本文系统综述了人工智能在心房颤动(AF)风险预测、监测和管理中的应用 | 首次全面评估了人工智能与心房颤动的交叉领域,并总结了AI在AF风险预测、监测和管理中的具体应用 | AI工具的可靠性和一致性因数据异质性和方法学不一致性而存在差异,需要标准化、标记的数据集和前瞻性临床试验的验证 | 评估人工智能在心房颤动检测和管理中的有效性 | 心房颤动(AF) | 机器学习 | 心血管疾病 | 机器学习模型,包括AI-ECG方法 | 最优时变机器学习模型,观察性医疗结果伙伴关系通用数据模型 | 医疗数据 | 39项符合纳入标准的研究,其中19项研究关注AF风险预测,20项研究关注监测和管理 |
2118 | 2025-02-12 |
Stochasticity as a solution for overfitting-A new model and comparative study on non-invasive EEG prospects
2025, Frontiers in human neuroscience
IF:2.4Q2
DOI:10.3389/fnhum.2025.1484470
PMID:39925722
|
研究论文 | 本研究评估了多种机器学习和深度学习模型在公开数据集上的表现,提出了一种新的分类器BruteExtraTree以解决过拟合问题 | 提出了一种新的分类器BruteExtraTree,该分类器通过继承其基础模型ExtraTreeClassifier的中等随机性来有效解决过拟合问题 | 在独立于受试者的情况下,尽管新模型表现优异,但仍需大幅改进数据记录或噪声去除方法以提高实用性 | 开发实用的脑机接口(BCI)应用,特别是针对内部语音信号的处理 | 内部语音信号 | 机器学习 | NA | 机器学习和深度学习模型 | BruteExtraTree, ShallowFBCSPNet | EEG信号 | 公开数据集 |
2119 | 2025-02-12 |
Digital pathology and artificial intelligence in renal cell carcinoma focusing on feature extraction: a literature review
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1516264
PMID:39926279
|
review | 本文综述了数字病理学(DP)和人工智能(AI)在肾细胞癌(RCC)中的应用,特别是在特征提取方面的研究进展 | 本文填补了DP和AI在RCC中应用研究的综述空白,并展示了深度学习模型在RCC亚型分类、分子预测和生存预测中的高准确率 | 本文主要基于现有文献进行综述,未涉及新的实验数据或模型开发 | 探讨DP和AI在RCC中的应用,特别是在特征提取方面的潜力 | 肾细胞癌(RCC)的病理图像和分子数据 | 数字病理学 | 肾细胞癌 | 深度学习 | 深度学习模型 | 病理图像 | NA |
2120 | 2025-02-12 |
Deep learning-assisted diagnosis of acute mesenteric ischemia based on CT angiography images
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1510357
PMID:39926426
|
研究论文 | 本研究旨在开发一种基于CT血管造影(CTA)影像和临床数据的深度学习模型,用于诊断急性肠系膜缺血(AMI) | 结合CTA影像和临床信息构建融合模型,显著提高了AMI的诊断准确性和效率 | 研究为回顾性研究,样本量相对较小(228例患者) | 开发一种深度学习模型,用于诊断急性肠系膜缺血(AMI) | 228例疑似AMI的患者 | 数字病理学 | 急性肠系膜缺血 | CT血管造影(CTA) | 深度学习模型 | 影像和临床数据 | 228例患者 |