本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2141 | 2025-03-09 |
Artificial intelligence and perinatology: a study on accelerated academic production- a bibliometric analysis
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1505450
PMID:40051727
|
研究论文 | 本文通过文献计量学方法,分析了近年来围产医学领域中人工智能应用的快速增长及其研究热点 | 首次系统性地通过文献计量学方法分析围产医学领域中人工智能的研究趋势和应用热点 | 研究仅基于特定数据库(WOSCC)的数据,可能无法涵盖所有相关文献 | 分析围产医学领域中人工智能的研究趋势和应用热点 | 围产医学领域的文献 | 医学信息学 | 围产医学 | 文献计量学分析 | NA | 文献数据 | 382篇相关文献,其中121篇高被引文献 | NA | NA | NA | NA |
| 2142 | 2025-03-09 |
Breaking new ground: machine learning enhances survival forecasts in hypercapnic respiratory failure
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1497651
PMID:40051730
|
研究论文 | 本研究旨在开发和验证一个预测高碳酸血症性呼吸衰竭患者生存的模型 | 使用随机生存森林(RSF)模型在预测高碳酸血症性呼吸衰竭患者预后方面表现出优于传统CoxPH模型和DeepSurv模型的性能 | 研究样本主要来自两家医院,可能限制了模型的普遍适用性 | 开发和验证一个预测高碳酸血症性呼吸衰竭患者生存的模型 | 高碳酸血症性呼吸衰竭患者 | 机器学习 | 呼吸系统疾病 | 随机生存森林(RSF)、DeepSurv、Cox比例风险模型(CoxPH) | RSF, DeepSurv, CoxPH | 临床数据 | 697名患者(565名建模组,132名外部验证组) | NA | NA | NA | NA |
| 2143 | 2025-03-09 |
MRI quantified enlarged perivascular space volumes as imaging biomarkers correlating with severity of anxiety depression in young adults with long-time mobile phone use
2025, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2025.1532256
PMID:40051766
|
研究论文 | 本研究旨在利用MRI量化的扩大血管周围间隙(EPVS)指标和机器学习算法,评估长时间使用手机(LTMPU)患者的焦虑和抑郁症状严重程度 | 首次将MRI量化的EPVS指标与机器学习算法结合,用于评估LTMPU患者的焦虑和抑郁症状严重程度,提供了一种非侵入性、客观且定量的诊断方法 | 样本量较小(82名参与者),且仅针对长时间使用手机的人群,可能限制了结果的普遍性 | 开发一种预测模型,评估长时间使用手机患者的焦虑和抑郁症状严重程度 | 长时间使用手机的年轻成年人 | 数字病理学 | 焦虑和抑郁 | MRI | 逻辑回归模型和K近邻模型 | 图像 | 82名长时间使用手机的参与者,其中37名患有焦虑,44名患有抑郁 | NA | NA | NA | NA |
| 2144 | 2025-03-09 |
Practical Applications of Artificial Intelligence Diagnostic Systems in Fundus Retinal Disease Screening
2025, International journal of general medicine
IF:2.1Q2
DOI:10.2147/IJGM.S507100
PMID:40051895
|
研究论文 | 本研究评估了一种基于深度学习的AI诊断系统在视网膜疾病分析中的性能,评估其与专家诊断的一致性及其在筛查应用中的整体效用 | 使用深度学习AI系统进行视网膜疾病筛查,并与专家诊断进行对比,评估其在实际应用中的可靠性和可行性 | 研究仅在一家医院进行,样本量虽大但可能缺乏多样性 | 评估AI诊断系统在视网膜疾病筛查中的性能 | 3076名接受全面眼科检查的患者 | 数字病理 | 视网膜疾病 | 深度学习 | CARE系统 | 图像 | 3076名患者 | NA | NA | NA | NA |
| 2145 | 2025-03-08 |
Corrigendum: Addressing grading bias in rock climbing: machine and deep learning approaches
2025, Frontiers in sports and active living
IF:2.3Q2
DOI:10.3389/fspor.2025.1570591
PMID:40051920
|
correction | 本文是对先前发表文章的更正 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 2146 | 2025-03-09 |
Research progress on artificial intelligence technology-assisted diagnosis of thyroid diseases
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1536039
PMID:40052126
|
综述 | 本文综述了人工智能技术在甲状腺疾病早期诊断中的应用研究,特别是深度学习算法在超声和病理图像识别中的应用 | 整合了多项研究结果,指出卷积神经网络模型在甲状腺结节和甲状腺病理细胞病变识别中具有高准确率,U-Net网络模型作为分割算法能显著提高甲状腺结节超声图像的识别准确率 | 目前甲状腺疾病的早期诊断仍依赖于检查设备和医生的临床经验,存在一定的误诊率 | 探索一种能在早期阶段客观筛查甲状腺病变的技术 | 甲状腺疾病的早期筛查和诊断 | 数字病理学 | 甲状腺癌 | 深度学习算法 | 卷积神经网络, U-Net网络模型 | 超声图像, 病理切片 | NA | NA | NA | NA | NA |
| 2147 | 2025-03-09 |
A review of AI-based radiogenomics in neurodegenerative disease
2025, Frontiers in big data
IF:2.4Q2
DOI:10.3389/fdata.2025.1515341
PMID:40052173
|
review | 本文综述了基于人工智能的放射基因组学在神经退行性疾病中的应用 | 结合放射组学和基因组学,利用人工智能技术提高神经退行性疾病的诊断准确性和及时性 | NA | 探讨人工智能在神经退行性疾病放射基因组学中的应用 | 神经退行性疾病 | digital pathology | geriatric disease | radiomics, genomics | machine learning, deep learning | imaging, genomic data | NA | NA | NA | NA | NA |
| 2148 | 2025-03-08 |
Deep5mC: Predicting 5-methylcytosine (5mC) methylation status using a deep learning transformer approach
2025, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2025.02.007
PMID:40041569
|
研究论文 | 本文介绍了一种基于深度学习Transformer的方法Deep5mC,用于预测5-甲基胞嘧啶(5mC)的甲基化状态 | Deep5mC利用基因组序列中的长程依赖性来预测5mC甲基化,显著优于现有方法,并揭示了长程序列上下文对5mC预测的影响 | 现有方法大多关注特定基因组区域,而Deep5mC虽然考虑了长程依赖性,但仍需进一步验证其在跨物种和人类疾病中的适用性 | 研究5mC甲基化状态与基因组序列的依赖性,并开发一种高效的预测方法 | 5-甲基胞嘧啶(5mC)的甲基化状态 | 机器学习 | NA | 深度学习 | Transformer | DNA序列 | NA | NA | NA | NA | NA |
| 2149 | 2025-03-08 |
Retraction: Risk management system and intelligent decision-making for prefabricated building project under deep learning modified teaching-learning-based optimization
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0319589
PMID:40043015
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 2150 | 2025-03-08 |
XAI-MRI: an ensemble dual-modality approach for 3D brain tumor segmentation using magnetic resonance imaging
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1525240
PMID:40046502
|
研究论文 | 本文提出了一种新颖的集成双模态方法,用于使用磁共振成像(MRI)进行3D脑肿瘤分割 | 提出了一种集成双模态方法,结合了表现最佳的双模态预训练模型,以提高分割性能,并引入了Grad-CAM可视化技术,生成热图以突出肿瘤区域,为临床医生提供模型决策的有用信息 | 未明确提及具体限制 | 提高脑肿瘤分割的准确性和可靠性,以支持有效的肿瘤分级和治疗计划 | 脑肿瘤 | 计算机视觉 | 脑肿瘤 | MRI | U-Net, 集成模型 | 3D MRI图像 | 未明确提及具体样本数量 | NA | NA | NA | NA |
| 2151 | 2025-03-08 |
The prognostic value of pathologic lymph node imaging using deep learning-based outcome prediction in oropharyngeal cancer patients
2025-Jan, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100733
PMID:40046573
|
研究论文 | 本研究探讨了在口咽癌患者中,结合病理淋巴结空间信息与深度学习模型对局部控制、区域控制、远处无转移生存和总生存的预测效果 | 首次在深度学习模型中结合病理淋巴结空间信息,以提高口咽癌患者的预后预测性能 | 研究仅基于单一机构的患者数据,可能限制了模型的泛化能力 | 探索结合病理淋巴结空间信息对深度学习模型预测口咽癌患者预后的潜在益处 | 口咽癌患者 | 数字病理 | 口咽癌 | 深度学习 | 深度学习模型 | PET/CT扫描图像 | 409名口咽癌患者 | NA | NA | NA | NA |
| 2152 | 2025-03-08 |
Deep learning combining imaging, dose and clinical data for predicting bowel toxicity after pelvic radiotherapy
2025-Jan, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100710
PMID:40046574
|
研究论文 | 本研究提出了一种深度学习模型,用于同时分析计算机断层扫描、剂量分布和临床元数据,以预测盆腔放疗后的肠道毒性,并识别临床风险因素和解剖区域的影响 | 开发了一种基于多实例学习、特征级融合和注意力的深度模型,能够同时分析3D成像和临床数据,识别潜在风险因素和关键解剖区域 | 数据集来自313名患者,虽然样本量较大,但患者群体的异质性(剂量、体积、分割、伴随治疗和随访期)可能影响模型的泛化能力 | 预测盆腔放疗后的肠道毒性,并识别临床风险因素和解剖区域的影响 | 313名接受3D适形放疗和容积调强弧形放疗的患者 | 数字病理 | NA | 深度学习 | 多实例学习模型 | 3D计算机断层扫描、计划剂量分布、临床数据 | 313名患者 | NA | NA | NA | NA |
| 2153 | 2025-03-08 |
Leveraging automated time-lapse microscopy coupled with deep learning to automate colony forming assay
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1520972
PMID:40046624
|
研究论文 | 本文介绍了一种结合延时显微镜和深度学习的人工智能辅助自动化集落形成实验(CFA)平台,用于实时跟踪集落形成并评估药物疗效 | 开发了一种基于深度学习和多目标跟踪的自动化集落计数平台,显著减少了人工操作并提高了准确性,同时支持长期细胞间相互作用和治疗反应的详细研究 | 未来需要与基于灌注的药物筛选系统集成以进一步增强个性化癌症治疗 | 开发一种自动化、高通量的集落形成实验平台,用于评估单癌细胞的克隆扩展能力和药物疗效 | B-急性淋巴细胞白血病(B-ALL)细胞 | 数字病理学 | 白血病 | 延时显微镜、深度学习 | YOLOv8 | 图像 | E2A-PBX1小鼠模型中的B-ALL细胞 | NA | NA | NA | NA |
| 2154 | 2025-10-07 |
A Novel Public Sentiment Analysis Method Based on an Isomerism Learning Model via Multiphase Processing
2025-Jan, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3274912
PMID:37220063
|
研究论文 | 提出一种基于异构学习和多阶段处理的公共情感分析方法,通过区块链实现分布式深度学习模型 | 提出基于区块链的异构学习模型,通过并行训练实现模型间可信协作,并设计事件客观性度量方法动态分配模型权重 | NA | 解决社交媒体网络中公共情感分析的复杂性和安全性问题 | 社交媒体中的公共舆论和情感表达 | 自然语言处理 | NA | NA | 深度学习 | 文本 | NA | NA | 异构学习模型 | NA | NA |
| 2155 | 2025-03-06 |
Rethinking Semantic Segmentation With Multi-Grained Logical Prototype
2025, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2025.3543052
PMID:40031630
|
研究论文 | 本文提出了一种多粒度逻辑原型(MGLP)方法,重新思考语义分割,以更好地符合人类视觉认知过程的抽象和结构化特性 | 提出了一种新的多粒度逻辑原型方法,通过建立不同粒度级别的类原型和显式建模不同语义层次之间的内在逻辑结构,改进了现有语义分割方法的性能 | 未明确提及具体局限性 | 改进语义分割方法,使其更符合人类视觉认知的抽象和结构化特性 | 语义分割任务 | 计算机视觉 | NA | NA | 多粒度逻辑原型(MGLP) | 图像 | 未明确提及具体样本数量 | NA | NA | NA | NA |
| 2156 | 2025-03-06 |
Artificial Intelligence in Neuroendovascular Procedures
2025, Journal of neuroendovascular therapy
DOI:10.5797/jnet.ra.2024-0107
PMID:40034100
|
综述 | 本文综述了人工智能在神经血管介入手术中的当前应用和未来潜力,重点关注基于AI的图像识别、实时手术辅助和未来发展 | 探讨了AI在神经血管介入手术中的创新应用,包括血管结构分析、设备检测和实时辅助系统,以及未来与机器人系统的集成 | 当前系统存在一些局限性,但技术进步表明AI在提高手术安全性、标准化和患者预后方面的作用将不断扩大 | 研究人工智能在神经血管介入手术中的应用及其潜力 | 神经血管介入手术 | 医学影像分析 | 神经血管疾病 | 深度学习算法 | NA | 图像 | NA | NA | NA | NA | NA |
| 2157 | 2025-03-06 |
Artificial intelligence in stroke risk assessment and management via retinal imaging
2025, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2025.1490603
PMID:40034651
|
综述 | 本文探讨了人工智能在通过视网膜成像评估和管理中风风险中的作用,重点关注视网膜成像在临床工作流程中的整合 | 利用机器学习和深度学习算法增强视网膜成像,展示了在早期疾病检测、严重程度分级和预后评估中的潜力 | 缺乏标准化的成像协议、对AI生成预测的信任不足、视网膜成像数据与电子健康记录的整合不足、需要在多样化人群中验证、以及伦理和监管问题 | 探讨人工智能在中风患者护理中的作用,特别是通过视网膜成像进行中风风险评估和管理 | 中风患者 | 数字病理学 | 中风 | 视网膜成像 | Xception, EfficientNet, Inception, ResNet, VGG, 随机森林, 支持向量机 | 图像 | NA | NA | NA | NA | NA |
| 2158 | 2025-03-06 |
Cardiotocography-Based Experimental Comparison of Artificial Intelligence and Human Judgment in Assessing Fetal Asphyxia During Delivery
2025-Jan, Cureus
DOI:10.7759/cureus.78282
PMID:40034878
|
研究论文 | 本研究通过实验比较了人工智能和人类专家在使用CTG数据预测胎儿窒息方面的诊断准确性 | 首次系统地比较了AI和人类专家在CTG数据解读上的表现,并探讨了AI辅助诊断的潜力 | AI算法的诊断准确性尚未超越人类专家,且需要进一步优化和更多CTG数据的积累 | 评估AI在胎儿窒息诊断中的潜力,并探讨其与人类判断的结合效果 | 胎儿窒息诊断 | 医疗人工智能 | 胎儿窒息 | 机器学习和深度学习 | ML和DL算法 | CTG数据 | 3,519个CTG数据集和984个CTG图 | NA | NA | NA | NA |
| 2159 | 2025-03-06 |
The application of artificial intelligence in insomnia, anxiety, and depression: A bibliometric analysis
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251324456
PMID:40035038
|
研究论文 | 本文通过文献计量分析,系统回顾了人工智能在失眠、焦虑和抑郁症中的应用,识别了关键研究热点并预测了未来趋势 | 首次通过文献计量工具(如VOSviewer和CiteSpace)对人工智能在心理健康领域的应用进行系统性分析,并识别了未来研究重点 | 数据隐私、伦理问题以及AI模型的可解释性仍需解决 | 系统回顾人工智能在失眠、焦虑和抑郁症中的应用,识别研究热点并预测未来趋势 | 失眠、焦虑和抑郁症 | 自然语言处理 | 精神疾病 | 文献计量分析 | 神经网络、机器学习、深度学习 | 文献数据 | 875篇文章 | NA | NA | NA | NA |
| 2160 | 2025-10-07 |
Non-Intrusive Speech Quality Assessment Based on Deep Neural Networks for Speech Communication
2025-Jan, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3321076
PMID:37824322
|
研究论文 | 提出一种基于深度学习的非侵入式语音质量评估方法,通过对抗自编码器和相位感知模型提升评估精度 | 提出数据模拟方法生成带POLQA标签的语音数据;应用对抗说话人分类器减少说话人相关信息影响;采用基于自编码器的表示学习和对抗训练方法;开发端到端的相位感知语音质量评估神经网络 | 需要依赖模拟数据进行预训练,在真实场景中的泛化能力有待进一步验证 | 提高非侵入式语音质量评估的准确性和泛化能力 | 语音通信中的语音质量评估 | 语音处理 | NA | POLQA(感知客观听力质量评估),主观听力测试 | 深度学习,对抗自编码器(AAE) | 语音信号,频谱特征(幅度和相位) | 三个数据集:一个POLQA模拟数据集和两个主观听力测试记录数据集 | NA | 自编码器,对抗自编码器(AAE),端到端神经网络 | 均方根误差(RMSE) | NA |