本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 201 | 2025-11-03 |
Enhancing Robotic Collaborative Tasks Through Contextual Human Motion Prediction and Intention Inference
2025, International journal of social robotics
IF:3.8Q2
DOI:10.1007/s12369-024-01140-2
PMID:41169784
|
研究论文 | 提出一种深度学习架构,通过预测3D人体运动和人类意图来增强机器人在协作任务中的能力 | 结合人类运动预测和意图推断,考虑机器人存在时的交互情境,采用多头注意力机制处理不同任务的输入 | 未明确说明模型在更复杂场景下的泛化能力,用户研究样本规模有限 | 提高机器人在人机协作任务中的表现和适应性 | 人机协作场景中的人类运动和意图 | 计算机视觉, 机器人学 | NA | 深度学习, 运动预测, 意图推断 | 多头注意力机制 | 3D运动数据, 情境信息 | 用户研究参与者(具体数量未说明) | NA | 多头注意力架构 | 社会性, 自然度, 安全性, 舒适度 | NA |
| 202 | 2025-11-03 |
Automated detection of pinworm parasite eggs using YOLO convolutional block attention module for enhanced microscopic image analysis
2025, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2025.1559987
PMID:41169809
|
研究论文 | 提出一种结合YOLO和注意力机制的新型框架YCBAM,用于自动化检测显微镜图像中的蛲虫寄生虫卵 | 首次将YOLO与自注意力机制和卷积块注意力模块(CBAM)集成,在具有挑战性的成像条件下实现寄生虫元素的精确定位 | NA | 开发自动化寄生虫检测方法以提高诊断准确性和效率 | 显微镜图像中的蛲虫寄生虫卵 | 计算机视觉 | 寄生虫感染 | 深度学习,显微镜成像 | YOLO, CNN | 显微镜图像 | NA | NA | YOLO Convolutional Block Attention Module (YCBAM), CBAM | 精确度, 召回率, 训练框损失, 平均精度(mAP), mAP50-95 | NA |
| 203 | 2025-11-03 |
Artificial intelligence (AI)-Enabled behavioral health application for college students: Pilot study protocol
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0335847
PMID:41166359
|
研究论文 | 本研究开发了一款基于人工智能的行为健康应用程序,用于大学生抑郁症状的自动筛查 | 结合传感器行为数据和深度学习技术开发主动、私密、自动化的心理健康自我意识工具 | 仅针对两所美国大学的1000名大一学生,样本代表性有限 | 开发自动化筛查工具识别大学生抑郁行为模式 | 18岁及以上大学一年级本科生 | 机器学习 | 抑郁症 | 传感器数据采集、问卷调查 | 深度学习 | 传感器行为数据、调查问卷数据 | 约1000名来自美国中西部和西南部两所公立大学的一年级本科生 | NA | NA | NA | NA |
| 204 | 2025-11-03 |
Enhanced audience sentiment analysis in IoT-integrated metaverse media communication
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0332106
PMID:41166380
|
研究论文 | 提出一种集成物联网和元宇宙媒体的深度学习情感分析框架,用于增强观众情感分析能力 | 融合BERT双向编码和GPT生成建模的BG-Hybrid混合模型,结合动态窗口分割和持续优化机制 | 未明确说明模型在跨语言和文化背景下的泛化能力 | 开发可扩展的实时情感分析系统,处理异构高速媒体流 | 物联网集成元宇宙媒体通信中的观众情感 | 自然语言处理 | NA | 情感分析 | BERT, GPT | 文本 | Twitter Sentiment140和Amazon Reviews数据集 | NA | BG-Hybrid混合架构 | 准确率, F1分数, 响应延迟 | NA |
| 205 | 2025-11-02 |
Advancing bioinformatics with large language models: components, applications and perspectives
2025-Jan-31, ArXiv
PMID:38259343
|
综述 | 全面概述大型语言模型在生物信息学中的核心组件、应用场景和未来展望 | 系统阐述LLMs在生物信息学多领域的应用潜力,提出实用指导策略 | 作为综述文章未涉及具体实验验证 | 探讨大型语言模型在生物信息学中的应用与发展前景 | 大型语言模型及其在生物信息学中的应用 | 自然语言处理, 生物信息学 | NA | 自监督学习, 半监督学习 | Transformer | 基因组学、转录组学、蛋白质组学、药物发现、单细胞分析数据 | NA | NA | Transformer | NA | NA |
| 206 | 2025-11-02 |
DCAF-GAN: Enhancing historical landscape restoration with dual-branch feature extraction and attention fusion
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0334532
PMID:41160614
|
研究论文 | 提出DCAF-GAN模型,通过双分支特征提取和注意力融合增强历史景观图像修复效果 | 采用双分支编码器和通道注意力引导融合模块,同时恢复精细纹理和全局结构 | 未明确说明模型在处理极端损坏情况下的表现 | 解决历史景观图像修复中纹理和结构重建的挑战 | 受损的历史景观图像 | 计算机视觉 | NA | 深度学习图像修复 | GAN | 图像 | 使用StreetView和Places2数据集进行实验 | NA | 双分支编码器,注意力融合模块 | PSNR,SSIM | NA |
| 207 | 2025-11-02 |
Self-learning model fusion for network anomaly detection: A hybrid CNN-LSTM-transformer framework
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0332502
PMID:41160632
|
研究论文 | 提出一种融合CNN、LSTM和Transformer的自学习混合深度学习框架,用于网络流量异常检测 | 提出协同两阶段模型融合架构捕获时空流量模式,采用带多指标漂移检测的自适应学习机制,并设计知识保持策略 | NA | 提升网络流量异常检测的适应性和性能 | 网络流量数据 | 机器学习 | NA | 深度学习 | CNN, LSTM, Transformer | 网络流量数据 | UNSW-NB15和CICIDS2017数据集 | NA | CNN-LSTM, LSTM-Transformer | F1-score, 准确率, 检测率 | NA |
| 208 | 2025-11-02 |
Computation of simple invariant solutions in fluid turbulence with the aid of deep learning
2025, Nonlinear dynamics
IF:5.2Q1
DOI:10.1007/s11071-025-11773-1
PMID:41163817
|
综述 | 探讨深度学习技术在流体湍流中计算简单不变解的应用进展 | 将深度学习中的自编码器和梯度优化技术首次系统应用于湍流动力学系统的不变解计算 | 目前仅在二维湍流中验证,高雷诺数应用前景仍需评估 | 加速湍流动力学系统中简单不变解的发现和收敛 | 流体湍流中的简单不变解(平衡态、周期轨道) | 机器学习 | NA | 深度学习 | 自编码器 | 流体动力学数据 | NA | NA | 自编码器 | 解的数量比较,收敛效率 | NA |
| 209 | 2025-11-02 |
Development and Validation of Deep Learning Model for Predicting Long-Term Prognosis in Patients with Symptomatic Intracranial Arterial Stenosis
2025, International journal of general medicine
IF:2.1Q2
DOI:10.2147/IJGM.S538889
PMID:41164008
|
研究论文 | 开发并验证用于预测症状性颅内动脉狭窄患者长期预后的深度学习模型 | 首次将深度学习模型应用于症状性ICAS患者的长期预后预测,与传统逻辑回归模型相比表现出显著优越性能 | 回顾性研究设计,样本量相对有限(266例患者),需外部验证确认泛化能力 | 预测症状性颅内动脉狭窄患者的疾病进展风险 | 266例症状性颅内动脉狭窄患者 | 机器学习 | 脑血管疾病 | NA | 深度学习, 逻辑回归 | 临床数据 | 266例症状性ICAS患者(训练集70%,验证集30%) | NA | NA | 准确率, 敏感度, 特异度, 精确率, F1分数, AUC | NA |
| 210 | 2025-11-02 |
A systematic review of deep learning-based segmentation techniques for brain tumor detection (2013-2023)
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251380645
PMID:41164152
|
系统综述 | 对2013-2023年间基于深度学习的脑肿瘤图像分割技术进行系统性回顾和文献计量分析 | 首次对脑肿瘤图像分割领域进行系统性文献计量分析,识别关键研究趋势和利益相关者 | 仅涵盖2013-2023年期间文献,可能遗漏最新研究进展 | 调查脑肿瘤检测中基于深度学习的图像分割技术的研究格局和发展趋势 | 931篇经过PRISMA筛选的学术文献 | 计算机视觉 | 脑肿瘤 | 文献计量分析,PRISMA指南 | 深度学习 | 文献数据 | 931篇文档 | VOSviewer, R Studio | NA | NA | NA |
| 211 | 2025-11-02 |
Advances in artificial intelligence applications for the management of chronic obstructive pulmonary disease
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1685254
PMID:41164160
|
综述 | 本文综述人工智能在慢性阻塞性肺疾病全病程管理中的技术应用与临床价值 | 建立了融合生物信息学与多组学分析的智能管理框架,提供覆盖疾病全过程的个体化解决方案 | 未提及具体数据验证结果和临床实施障碍 | 探讨AI在COPD诊疗防控中的临床应用前景与发展方向 | 慢性阻塞性肺疾病患者 | 机器学习 | 慢性阻塞性肺疾病 | 多模态数据, 放射组学, 多组学分析 | 机器学习, 深度学习 | 多模态数据 | NA | NA | NA | NA | NA |
| 212 | 2025-11-02 |
A hybrid framework for enhanced segmentation and classification of colorectal cancer histopathology
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1647074
PMID:41164179
|
研究论文 | 提出一种结合Swin Transformer、EfficientNet和ResUNet-A的混合深度学习系统,用于结直肠癌组织病理学的增强分割和分类 | 整合自注意力机制、复合缩放和残差学习,结合多种先进架构的优势,在特征提取、全局上下文建模和空间分类方面实现创新 | 未提及外部验证集的表现,可能缺乏对不同数据集的泛化能力评估 | 开发自动化结直肠癌组织病理学分析系统,提高诊断准确性和效率 | 结直肠癌组织病理学图像,包括锯齿状腺瘤、息肉、腺癌、高级别和低级别上皮内瘤变及正常组织 | 数字病理学 | 结直肠癌 | 组织病理学染色 | 深度学习 | 组织病理学图像 | 未明确说明具体样本数量 | 未明确说明 | Swin Transformer,EfficientNet,ResUNet-A | 准确率,精确率,召回率,F1分数 | NA |
| 213 | 2025-11-02 |
Detection of antimicrobial peptides from fecal samples of FMT donors using deep learning
2025, Frontiers in veterinary science
IF:2.6Q1
DOI:10.3389/fvets.2025.1689589
PMID:41164228
|
研究论文 | 本研究结合宏基因组学和深度学习从粪便微生物移植供体样本中挖掘抗菌肽 | 首次将深度学习与宏基因组学相结合从人类粪便微生物组中挖掘功能性抗菌肽 | 仅从120个供体样本中挖掘,样本规模相对有限 | 从粪便微生物移植供体中发现具有抗菌活性的新型抗菌肽 | 粪便微生物移植供体的粪便样本 | 机器学习 | 细菌感染相关疾病 | 宏基因组学, 宏蛋白质组学, 分子对接, 分子动力学模拟 | 深度学习 | 宏基因组序列数据 | 120个粪便微生物移植供体样本 | NA | NA | NA | NA |
| 214 | 2025-11-02 |
YOLOv8-Seg: a deep learning approach for accurate classification of osteoporotic vertebral fractures
2025, Frontiers in radiology
DOI:10.3389/fradi.2025.1651798
PMID:41164317
|
研究论文 | 本研究开发了一种基于YOLOv8-Seg深度学习模型的自动化方法,用于从CT图像中准确分类骨质疏松性椎体骨折 | 首次将YOLOv8-Seg模型应用于骨质疏松性椎体骨折的自动分类,实现了对压碎型、前楔形和双凹型骨折的高精度识别 | 测试集样本量较小(仅30张图像),需要更大规模的外部验证 | 开发自动化工具辅助骨质疏松性椎体骨折的早期精确诊断 | 骨质疏松性椎体骨折患者的CT图像 | 计算机视觉 | 骨质疏松性椎体骨折 | CT成像 | YOLOv8-Seg | 医学图像 | 673张CT图像(643张训练验证,30张测试) | NA | YOLOv8-Seg | mAP50-95 | NA |
| 215 | 2025-11-02 |
Quantitative analysis of gait and balance using deep learning on monocular videos and the timed up and go test in idiopathic normal-pressure hydrocephalus
2025, Frontiers in aging neuroscience
IF:4.1Q2
DOI:10.3389/fnagi.2025.1644543
PMID:41164460
|
研究论文 | 本研究验证了基于单目视频和深度学习算法的视觉步态分析系统在特发性正常压力脑积水患者中的步态参数评估能力 | 首次将基于单目视频的视觉步态分析系统与定时起立行走测试相结合,用于预测特发性正常压力脑积水患者的跌倒风险 | 样本量相对较小(59名患者),仅使用单中心数据 | 研究视觉步态分析系统测量的步态参数与定时起立行走测试评分的关系,并开发预测跌倒风险的机器学习模型 | 特发性正常压力脑积水患者 | 计算机视觉 | 神经退行性疾病 | 基于视频的步态分析 | 深度学习 | 视频 | 59名患者 | NA | NA | AUC | NA |
| 216 | 2025-11-02 |
Ethical and legal concerns in artificial intelligence applications for the diagnosis and treatment of lung cancer: a scoping review
2025, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2025.1663298
PMID:41164831
|
综述 | 本范围综述探讨人工智能在肺癌诊疗应用中的伦理和法律问题 | 首次系统梳理AI在肺癌领域应用的伦理法律挑战,重点关注数据隐私和算法公平性等核心问题 | 缺乏全面的法律分析,大多数研究来自高收入国家,全球视角不足 | 分析AI在肺癌诊疗应用中产生的伦理和法律问题 | 人工智能在肺癌筛查、诊断、治疗和预后中的应用 | 医疗人工智能 | 肺癌 | 深度学习 | 混合和多模态AI系统 | 诊断影像数据 | 20篇符合条件的研究文献 | NA | NA | NA | NA |
| 217 | 2025-11-02 |
Explainable AI-enabled hybrid deep learning architecture for breast cancer detection
2025, Frontiers in immunology
IF:5.7Q1
DOI:10.3389/fimmu.2025.1658741
PMID:41112281
|
研究论文 | 提出一种结合可解释人工智能的混合深度学习架构用于乳腺癌检测 | 集成三种不同预训练CNN架构的混合深度学习框架,并引入XAI组件增强模型可解释性 | NA | 开发可靠且可解释的乳腺癌诊断系统 | 乳腺癌超声图像 | 计算机视觉 | 乳腺癌 | 深度学习 | CNN | 医学图像 | NA | NA | DENSENET121,Xception,VGG16 | 准确率 | NA |
| 218 | 2025-11-02 |
Diagnostic accuracy of a deep learning model for pterygium detection in Barcelos, Brazilian Amazon
2025, Arquivos brasileiros de oftalmologia
IF:1.1Q3
DOI:10.5935/0004-2749.2025-0053
PMID:41172514
|
研究论文 | 评估基于MobileNet-V2的深度学习模型在巴西亚马逊地区使用智能手机拍摄的前段照片中检测翼状胬肉的诊断准确性 | 在偏远亚马逊地区使用智能手机采集图像并结合深度学习模型进行翼状胬肉检测的首个试点研究 | 样本量较小(76只眼睛),仅为初步研究结果 | 开发适用于偏远地区的翼状胬肉自动检测工具 | 巴西巴塞卢斯地区的38名参与者(76只眼睛) | 计算机视觉 | 眼科疾病 | 智能手机前段摄影 | CNN | 图像 | 76只眼睛 | NA | MobileNet-V2 | 灵敏度, 特异度, 准确度, 阳性预测值, 阴性预测值, AUC | NA |
| 219 | 2025-10-31 |
Consensus structure prediction of A. thaliana's MCTP4 structure using prediction tools and coarse grained simulations of transmembrane domain dynamics
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0326993
PMID:40663537
|
研究论文 | 本研究结合深度学习和分子动力学模拟方法预测拟南芥MCTP4蛋白的跨膜结构域构象 | 首次将多种深度学习预测工具与物理基础的粗粒度模拟相结合,揭示MCTP4跨膜结构域的复杂构象景观 | 单一深度学习方法预测膜蛋白结构存在挑战,不同预测工具结果存在差异 | 预测拟南芥MCTP4蛋白跨膜结构域的三维结构和构象动力学 | 拟南芥MCTP4蛋白的ER锚定跨膜区域 | 计算生物学 | NA | 深度学习预测,粗粒度分子动力学模拟 | 深度学习 | 蛋白质序列,结构数据 | NA | NA | ESMFold, AlphaFold2, AlphaFold-Multimer, trRosetta, RoseTTAFold, OmegaFold | 构象聚类分析,螺旋间接触界面预测 | NA |
| 220 | 2025-10-31 |
Automated classification and explainable AI analysis of lung cancer stages using EfficientNet and gradient-weighted class activation mapping
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1625183
PMID:41001382
|
研究论文 | 本研究提出了一种基于EfficientNet和Grad-CAM的自动化深度学习模型,用于肺癌分期的CT图像分类和可解释性分析 | 结合EfficientNet-B0架构与梯度加权类激活映射(Grad-CAM),在实现高精度肺癌分期分类的同时提供可视化解释 | 研究仅使用单一数据集(IQ-OTH/NCCD),样本量相对有限(1190个CT扫描) | 开发自动化肺癌分期分类系统,提高诊断准确性和可解释性 | 肺部CT扫描图像 | 医学影像分析 | 肺癌 | CT成像 | CNN | 医学图像 | 1190个CT扫描 | NA | EfficientNet-B0 | 准确率,精确率,召回率 | NA |