深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202501] [清除筛选条件]
当前共找到 2889 篇文献,本页显示第 2501 - 2520 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
2501 2025-01-19
BioStructNet: Structure-Based Network with Transfer Learning for Predicting Biocatalyst Functions
2025-Jan-14, Journal of chemical theory and computation IF:5.7Q1
研究论文 本文介绍了BioStructNet,一种基于结构的深度学习网络,用于预测生物催化剂功能,通过整合蛋白质和配体结构数据来捕捉酶-底物相互作用的复杂性 BioStructNet结合了蛋白质和配体结构数据,并采用迁移学习优化小数据集的预测精度,提高了生物催化活性预测的准确性 特定酶功能(如转化效率和立体选择性)的数据可用性有限,影响了预测精度 开发一种深度学习模型,用于预测生物催化剂的功能,以加速工业用功能酶的发现 酶-底物相互作用 机器学习 NA 深度学习,迁移学习 深度学习网络 蛋白质和配体结构数据 使用CalB数据集进行案例研究
2502 2025-01-19
DANTE-CAIPI Accelerated Contrast-Enhanced 3D T1: Deep Learning-Based Image Quality Improvement for Vessel Wall MRI
2025-Jan-08, AJNR. American journal of neuroradiology
研究论文 本文探讨了深度学习去噪算法在加速、血液抑制后的颅内血管壁MRI(IVW)中的应用,以提高图像质量并缩短扫描时间 首次将深度学习去噪算法应用于DANTE-CAIPI-SPACE加速和血液抑制的IVW,显著减少了动脉和静脉流动伪影,并在较短的扫描时间内提高了信噪比(SNR) 研究样本量较小(64名患者),且未进行长期随访以评估该技术的临床效果 提高加速和血液抑制后的颅内血管壁MRI(IVW)的图像质量,减少伪影并提高信噪比(SNR) 64名连续接受IVW扫描的患者 医学影像 NA 深度学习去噪算法 深度卷积网络(DCNN) MRI图像 64名患者
2503 2025-01-19
Deep Learning-Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction
2025-Jan-08, AJNR. American journal of neuroradiology
研究论文 本研究比较了基于深度学习的超分辨率重建与传统压缩感知重建在脑部扩散加权磁共振成像(DWI)中对梗死性卒中的图像质量和诊断信心的影响 首次将深度学习技术应用于脑部DWI的超分辨率重建,以提高梗死性卒中的诊断信心 研究为回顾性设计,样本量相对较小(114例),且未涉及其他类型的卒中 评估深度学习超分辨率重建在脑部DWI中对梗死性卒中的图像质量和诊断信心的提升效果 114名接受脑部DWI检查的参与者 医学影像 梗死性卒中 深度学习超分辨率重建 深度学习模型 磁共振成像(MRI)图像 114名参与者
2504 2025-01-19
Evaluating CNN Architectures for the Automated Detection and Grading of Modic Changes in MRI: A Comparative Study
2025-Jan, Orthopaedic surgery IF:1.8Q2
研究论文 本研究开发并评估了卷积神经网络(CNN)在检测和分级Modic变化(MCs)中的性能,并与初级医生的表现进行了比较 首次使用CNN自动检测和分级Modic变化,并验证了AI辅助对初级医生诊断一致性的提升 样本量相对较小,且数据来源仅限于特定品牌的MRI扫描仪 开发并验证CNN在MRI图像中自动检测和分级Modic变化的性能 139名患者的MRI图像 计算机视觉 脊柱疾病 MRI CNN, YOLOv8, YOLOv5 图像 139名患者的MRI图像(109名来自Philips扫描仪,30名来自Philips和United Imaging扫描仪)
2505 2025-01-18
Brief Review and Primer of Key Terminology for Artificial Intelligence and Machine Learning in Hypertension
2025-Jan, Hypertension (Dallas, Tex. : 1979)
review 本文简要回顾并介绍了人工智能和机器学习在高血压领域的关键术语 本文提供了人工智能和机器学习在高血压管理中的应用概述,特别是通过远程患者监测和数字疗法来改善诊断和治疗 本文主要是一个术语介绍和综述,未涉及具体的研究数据或实验结果 介绍人工智能和机器学习在高血压管理中的应用及其潜力 高血压患者及其相关数据 machine learning cardiovascular disease NA NA structured or unstructured data sets NA
2506 2025-01-18
Predicting therapeutic response to neoadjuvant immunotherapy based on an integration model in resectable stage IIIA (N2) non-small cell lung cancer
2025-Jan, The Journal of thoracic and cardiovascular surgery IF:4.9Q1
研究论文 本研究探讨了基于血液的肿瘤突变负荷(bTMB)和深度学习模型在预测可切除IIIA期(N2)非小细胞肺癌新辅助化疗免疫治疗中的主要病理反应(MPR)和生存率的有效性 开发了一个结合计算机断层扫描(CT)的深度学习评分、bTMB和临床因素的综合模型,用于预测新辅助化疗免疫治疗的肿瘤反应 样本量较小(45名患者),且基线循环肿瘤DNA(ctDNA)状态与病理反应和生存率无显著关联 预测可切除IIIA期(N2)非小细胞肺癌患者对新辅助化疗免疫治疗的反应 45名接受新辅助化疗免疫治疗的IIIA期(N2)非小细胞肺癌患者 数字病理学 肺癌 深度学习模型,血液肿瘤突变负荷(bTMB)检测 深度学习模型 血液样本,CT图像 45名IIIA期(N2)非小细胞肺癌患者
2507 2025-01-18
TransEBUS: The interpretation of endobronchial ultrasound image using hybrid transformer for differentiating malignant and benign mediastinal lesions
2025-Jan, Journal of the Formosan Medical Association = Taiwan yi zhi
研究论文 本研究旨在建立一个深度学习自动辅助诊断系统,用于区分内镜超声(EBUS)图像中纵隔病变的良恶性 提出了基于混合Transformer的深度学习架构TransEBUS,能够从未充分数据中提取时空特征,并设计了一个双流模块来整合EBUS的三种不同成像模式信息 数据集规模可能较小,模型在更大数据集上的表现尚需验证 建立自动辅助诊断系统以区分EBUS图像中纵隔病变的良恶性 内镜超声(EBUS)图像中的纵隔病变 计算机视觉 纵隔病变 深度学习 混合Transformer(TransEBUS) 视频(EBUS图像) 未明确说明样本数量
2508 2025-01-16
An efficient deep unrolling network for sparse-view CT reconstruction via alternating optimization of dense-view sinograms and images
2025-Jan-15, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种高效的深度展开网络,通过交替优化密集视图正弦图和图像来实现稀疏视图CT重建 与之前的展开方法不同,该方法专注于优化密集视图正弦图而非全视图正弦图,从而减少计算资源和运行时间,并最小化网络在稀疏比例极小时执行正弦图修复的挑战 NA 解决稀疏视图CT重建中的计算资源消耗问题,同时保持重建图像的质量 稀疏视图CT重建 计算机视觉 NA 深度展开方法 深度神经网络 图像 512 × 512像素的图像,2304 × 736的投影数据
2509 2025-01-16
Deep learning-driven prediction of chemical addition patterns for carboncones and fullerenes
2025-Jan-15, Physical chemistry chemical physics : PCCP IF:2.9Q1
研究论文 本文提出了一种基于深度学习的增量方法,用于预测碳锥和富勒烯的氢化和氯化反应中的区域选择性 利用图基特征,开发了不依赖3D分子坐标输入的深度神经网络模型,能够处理高度扭曲的加成物,并成功预测了其他方法无法解决的实验加成模式 模型仅基于原子连接性,可能忽略了其他潜在的化学影响因素 研究碳锥和富勒烯功能化过程中的区域选择性预测 碳锥和富勒烯 机器学习 NA 深度学习 深度神经网络 (DNN) 图基特征 CH和CH碳锥的氢化反应,CCl和CCl(= 18, 24, 和28)的氯化反应
2510 2025-01-16
Deep Learning-Driven Optimization of Antihypertensive Properties from Whey Protein Hydrolysates: A Multienzyme Approach
2025-Jan-15, Journal of agricultural and food chemistry IF:5.7Q1
研究论文 本研究利用深度学习优化了乳清蛋白水解物中的抗高血压肽,通过多酶组合方法显著提高了ACE抑制率 结合深度学习和多酶组合方法优化抗高血压肽,显著提高了ACE抑制率和生物稳定性 研究主要基于动物实验,尚未在人体中进行验证 优化乳清蛋白水解物中的抗高血压肽,开发有效的膳食干预方法 乳清蛋白水解物和高血压大鼠 机器学习 心血管疾病 深度学习,分子对接 Large Language Models (LLMs) 生物化学数据 高血压大鼠
2511 2025-01-16
Active Physics-Informed Deep Learning: Surrogate Modeling for Nonplanar Wavefront Excitation of Topological Nanophotonic Devices
2025-Jan-15, Nano letters IF:9.6Q1
研究论文 本文提出了一种结合监督学习和物理约束的深度学习方法,用于设计特定波长的拓扑纳米光子器件 通过将物理约束嵌入神经网络的训练中,显著减少了模拟时间,并利用非平面波前激发探测拓扑保护的等离子体模式,使设计和训练过程非线性 NA 设计拓扑纳米光子器件,以控制特定波长的光 拓扑纳米光子器件 机器学习 NA 监督学习、物理约束的深度学习 神经网络 模拟数据 NA
2512 2025-01-16
Correction: Mathematical Model-Driven Deep Learning Enables Personalized Adaptive Therapy
2025-Jan-15, Cancer research IF:12.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA
2513 2025-01-16
Enhancing safety with an AI-empowered assessment and monitoring system for BSL-3 facilities
2025-Jan-15, Heliyon IF:3.4Q1
研究论文 本文介绍了一种AI赋能的评估和监控系统,用于增强BSL-3实验室的安全性,确保人员遵守个人防护装备(PPE)规定 开发了一种基于深度学习的系统,用于实时检测和监控BSL-3实验室中PPE的使用情况,并通过实时通知系统提高安全性 系统的准确性和召回率虽然较高,但仍存在一定的误报和漏报风险,且数据集规模有限 提高BSL-3实验室的安全性,减少病原体暴露风险 BSL-3实验室中的人员及其PPE使用情况 计算机视觉 NA 深度学习 深度学习模型 图像 外部检测系统使用4112张图像,内部管理系统使用3347张图像
2514 2025-01-16
Deep Learning-Enabled Rapid Metabolic Decoding of Small Extracellular Vesicles via Dual-Use Mass Spectroscopy Chip Array
2025-Jan-14, Analytical chemistry IF:6.7Q1
研究论文 本文开发了一种高通量双用途质谱芯片阵列(DUMSCA),用于快速分离和检测血浆中的小细胞外囊泡(sEVs),并利用深度学习模型对克罗恩病进行高效诊断 开发了DUMSCA技术,显著提高了sEVs的分离和检测速度,并结合深度学习模型实现了疾病的高效诊断 未明确提及具体局限性 改进sEVs的分离方法,高效收集高质量sEV数据,并快速分析大规模数据集,以实现疾病诊断 血浆中的小细胞外囊泡(sEVs) 数字病理学 克罗恩病 双用途质谱芯片阵列(DUMSCA)、串联质谱实验 深度学习模型 代谢数据矩阵 未明确提及样本数量
2515 2025-01-16
AI-Based Discrimination of Faradaic Current against Nonfaradaic Current Inspired by Speech Denoising
2025-Jan-14, Analytical chemistry IF:6.7Q1
研究论文 本文提出了一种基于深度学习的算法,用于区分循环伏安法中的法拉第电流和非法拉第电流,灵感来源于语音去噪技术 利用深度学习算法从循环伏安图中预测理论法拉第电流,创新性地将语音去噪技术应用于电化学系统研究 未提及算法的泛化能力及在不同电化学系统中的适用性 解决循环伏安法中法拉第电流与非法拉第电流分离的难题,以提取有用信息 循环伏安法中的电流响应 机器学习 NA 循环伏安法(CV) 深度神经网络(DNN) 电化学数据 未明确提及样本数量
2516 2025-01-16
Reverse design of broadband sound absorption structure based on deep learning method
2025-Jan-14, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于深度学习的逆向设计方法,用于设计宽带吸声结构 利用深度神经网络建立结构参数与吸声系数曲线之间的映射关系,简化了传统方法中耗时的数值模拟和复杂计算过程 未提及具体的数据集规模或实验验证的广泛性 实现宽带高吸声结构的逆向设计,提高复杂超材料设计的效率 吸声结构 机器学习 NA 深度学习 深度神经网络 结构参数与吸声系数曲线 未提及具体样本数量
2517 2025-01-16
Deep learning empowered sensor fusion boosts infant movement classification
2025-Jan-14, Communications medicine IF:5.4Q1
研究论文 本文提出了一种基于深度学习的传感器融合方法,用于婴儿运动分类,以提高神经发育障碍的早期识别 首次将多传感器融合技术应用于婴儿运动分类,显著提高了分类准确率 所有模型均在专有数据集上设计、训练和评估,难以直接比较 开发一种自动化分类婴儿运动模式的方法,以增强基于AI的神经功能早期识别 51名正常发育的婴儿 机器学习 神经发育障碍 传感器融合 CNN 多模态传感器数据(压力、惯性和视觉传感器) 51名婴儿
2518 2025-01-16
Belt conveyor idler fault detection algorithm based on improved YOLOv5
2025-Jan-14, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于改进YOLOv5的深度学习算法,用于实时检测带式输送机托辊故障 在YOLOv5网络中引入了坐标注意力机制,并使用α-CIoU定位损失函数替代传统CIoU,以提高模型的回归精度 NA 提高带式输送机托辊故障检测的准确性和实时性 带式输送机托辊 计算机视觉 NA 深度学习 YOLOv5 红外图像 自建的红外图像数据集
2519 2025-01-16
Nanocarrier imaging at single-cell resolution across entire mouse bodies with deep learning
2025-Jan-14, Nature biotechnology IF:33.1Q1
研究论文 本文介绍了一种名为SCP-Nano的实验与深度学习集成管道,用于全面量化纳米载体在整个小鼠体内的单细胞分辨率靶向分布 SCP-Nano能够在极低剂量下揭示纳米载体的组织分布模式,远低于传统全身成像技术的检测限,并能推广到多种纳米载体类型 NA 开发一种高效准确的方法来分析纳米载体在整个生物体中的细胞水平生物分布,以加速精确和安全的纳米载体治疗的发展 小鼠体内的纳米载体 数字病理学 NA 深度学习 NA 图像 小鼠
2520 2025-01-16
Predictive value of dendritic cell-related genes for prognosis and immunotherapy response in lung adenocarcinoma
2025-Jan-14, Cancer cell international IF:5.3Q1
研究论文 本研究通过筛选树突状细胞相关基因,构建了一个预测肺腺癌患者预后和免疫治疗反应的预后签名 创新性地建立了一个基于深度学习的预测模型DCRGS,用于预测肺腺癌患者的预后,并具有高准确性和敏感性 研究结果需要进一步在更大规模的临床样本中进行验证 预测肺腺癌患者的预后和免疫治疗反应 肺腺癌患者 数字病理 肺癌 单细胞RNA测序(scRNA-seq)、批量RNA测序、实时定量PCR(q-PCR) 深度学习模型 RNA测序数据、临床数据 恶性胸腔积液样本中的树突状细胞
回到顶部