深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202501] [清除筛选条件]
当前共找到 3544 篇文献,本页显示第 2741 - 2760 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
2741 2025-10-07
A Review on Deep Learning for Quality of Life Assessment Through the Use of Wearable Data
2025, IEEE open journal of engineering in medicine and biology IF:2.7Q3
综述 本文全面回顾了深度学习技术在生活质量评估中的应用,重点关注可穿戴数据的分析 系统整合了深度学习与可穿戴数据在生活质量评估中的交叉应用,特别关注生理和心理健康子领域 作为综述文章,不包含原始研究数据,主要基于现有文献分析 探讨深度学习技术如何通过可穿戴数据改进生活质量评估方法 可穿戴设备收集的生理信号和健康数据 机器学习 NA 可穿戴传感技术 深度学习 生理信号,患者报告结果,医疗图像 NA NA NA NA NA
2742 2025-10-07
Optimal Transport Based Graph Kernels for Drug Property Prediction
2025, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 提出基于最优传输理论的图核方法用于药物ADMET性质预测 首次将最优传输理论应用于构建图核函数,相比图神经网络具有更好的可解释性、适应性和泛化能力 未明确说明方法在特定类型药物或性质预测上的局限性 开发计算工具以早期准确预测药物的ADMET性质 药物分子的图结构数据 机器学习 NA 图匹配,最优传输理论 图核方法 图数据 19个不同的ADMET数据集 NA 基于最优传输的图核 NA NA
2743 2025-10-07
ChromosomeNet: Deep Learning-Based Automated Chromosome Detection in Metaphase Cell Images
2025, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 提出基于深度学习的染色体自动检测系统ChromosomeNet,用于中期细胞图像中的染色体识别 结合单阶段和双阶段模型优势,无需预处理即可处理原始图像,在包含困难图像的大规模数据集上实现高精度检测 需要其他医院数据进行跨院验证以确认临床适用性 开发自动染色体检测和识别系统以辅助产前诊断 中期细胞图像中的染色体 计算机视觉 染色体疾病 深度学习 目标检测模型 图像 5000张中期细胞图像,包含229,852条染色体(其中3827张简单图像,1173张困难图像) NA ChromosomeNet(结合单阶段和双阶段模型) mAP50, 准确率, 召回率, F1分数 NA
2744 2025-10-07
Evaluating the advancements in protein language models for encoding strategies in protein function prediction: a comprehensive review
2025, Frontiers in bioengineering and biotechnology IF:4.3Q2
综述 全面评估蛋白质语言模型在蛋白质功能预测中编码策略的最新进展 系统整合最新蛋白质语言模型在功能预测中的应用现状,并与传统方法进行详尽性能对比 NA 评估蛋白质语言模型在蛋白质功能预测编码策略中的进展 蛋白质序列数据及其功能预测 生物信息学 NA 深度学习,蛋白质语言模型 蛋白质语言模型 蛋白质序列数据 NA NA NA 准确率 NA
2745 2025-10-07
ECG-LM: Understanding Electrocardiogram with a Large Language Model
2025, Health data science
研究论文 开发了首个能够处理自然语言并理解心电图信号的多模态大语言模型ECG-LM 首创将多模态大语言模型应用于心电图处理,通过专门的ECG编码器将原始ECG信号转换到高维特征空间并与文本特征空间对齐 文本-ECG数据稀缺问题通过医疗指南生成数据来解决,但仍需更多真实临床数据验证 开发能够整合患者数据和ECG读数并提供临床建议的多模态大语言模型 心电图信号和患者临床数据 自然语言处理, 医疗人工智能 心血管疾病 多模态大语言模型, ECG信号处理 大语言模型, 多模态模型 心电图信号, 文本数据 基于医疗指南生成的文本-ECG对和医院真实临床数据 NA 大语言模型, 专门的ECG编码器 心血管疾病检测准确率, 问答性能 NA
2746 2025-10-07
Application of human-in-the-loop hybrid augmented intelligence approach in security inspection system
2025, Frontiers in artificial intelligence IF:3.0Q2
研究论文 提出一种人在回路混合增强智能方法,通过混合决策策略提升安检系统的安全性和效率 首次将“拒绝优先”和“放行优先”两种策略结合的混合决策方法应用于安检系统 实验数据仅来自特定安检场景,未验证在其他场景的泛化能力 提升安检系统的安全性和可靠性,同时降低人力成本 安检系统中的违禁品检测 机器智能 NA 人在回路混合增强智能 深度学习 安检数据 来自特定安检站点的数据集 NA NA 安全性、效率、人力成本 NA
2747 2025-10-07
AlphaFold 2, but not AlphaFold 3, predicts confident but unrealistic β-solenoid structures for repeat proteins
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 评估AlphaFold 2在完美重复序列蛋白质结构预测中的表现,发现其倾向于生成高置信度但不现实的β-螺线管结构 首次系统揭示AlphaFold 2对完美重复序列存在特异性预测偏差,生成具有不合理特征的β-螺线管结构 研究主要针对人工设计的完美重复序列,对天然蛋白质的适用性需要进一步验证 评估AlphaFold 2在特定蛋白质序列类型(完美重复序列)上的预测准确性 由不同长度随机序列组成的完美重复蛋白质序列 计算生物学 NA 蛋白质结构预测,分子动力学模拟 深度学习 蛋白质序列数据 多种不同长度的完美重复序列 AlphaFold 2, 其他先进结构预测方法 AlphaFold 2架构 预测置信度,结构合理性评估 NA
2748 2025-10-07
Advancing forecasting capabilities: A contrastive learning model for forecasting tropical cyclone rapid intensification
2025-Jan-28, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
研究论文 开发了一种基于对比学习的热带气旋快速增强预测模型,显著提升了预测性能 首次将对比学习应用于热带气旋快速增强预测,解决了样本不平衡问题并整合了热带气旋结构特征 研究仅针对西北太平洋区域2020-2021年的数据,尚未验证在其他区域和时期的泛化能力 提高热带气旋快速增强的预测准确性 热带气旋快速增强事件 机器学习 NA 卫星红外成像、大气和海洋数据采集 对比学习模型 卫星图像、大气数据、海洋数据 1,149个热带气旋时期(西北太平洋2020-2021年) NA RITCF-contrastive POD(检测概率), FARate(误报率) NA
2749 2025-10-07
Modeling gene interactions in polygenic prediction via geometric deep learning
2025-Jan-22, Genome research IF:6.2Q1
研究论文 提出一种基于几何深度学习的可解释框架PRS-Net,用于建模基因相互作用以提升多基因风险预测 首次将几何深度学习应用于多基因风险评分,在单基因分辨率下解卷积全基因组PRS并显式建模基因-基因相互作用 NA 开发能够捕捉基因型与表型复杂非线性关系的多基因风险预测方法 复杂疾病和性状的多基因风险预测 机器学习 复杂疾病 基因组数据分析 图神经网络(GNN) 基因组数据 NA NA 图神经网络,注意力机制 预测性能 NA
2750 2025-10-07
Estimating Task-based Performance Bounds for Accelerated MRI Image Reconstruction Methods by Use of Learned-Ideal Observers
2025-Jan-16, ArXiv
PMID:39876930
研究论文 本研究探索了在加速MRI图像重建中应用学习理想观察者来估计基于任务的性能界限 将卷积神经网络近似的理想观察者(CNN-IO)分析方法扩展到多线圈MRI系统,为加速数据采集技术提供任务性能界限指导 研究基于风格化多线圈SENSE MRI系统和深度生成随机脑模型,可能无法完全代表真实临床场景 为加速MRI图像重建方法建立基于任务的性能界限,指导欠采样数据采集技术设计 多线圈磁共振成像系统 医学影像分析 NA 多线圈磁共振成像,灵敏度编码 CNN MRI图像数据 NA NA 卷积神经网络 理想观察者性能,任务性能界限 NA
2751 2025-10-07
Reusable specimen-level inference in computational pathology
2025-Jan-10, ArXiv
PMID:39867428
研究论文 开发了一个名为SpinPath的工具包,旨在通过提供预训练模型库和推理平台来普及计算病理学中的标本级深度学习 首个专门针对计算病理学标本级推理的完整工具包,包含预训练模型库、Python推理引擎和JavaScript推理平台 NA 解决计算病理学中标本级模型不可用的问题,促进该领域深度学习的广泛应用 计算病理学中的标本级任务 数字病理学 NA 深度学习 基础模型 病理图像 NA Python, JavaScript NA 在转移瘤检测任务中进行了验证 NA
2752 2025-10-07
Counterfactual Diffusion Models for Mechanistic Explainability of Artificial Intelligence Models in Pathology
2025-Jan-08, bioRxiv : the preprint server for biology
研究论文 开发用于病理学AI模型机制可解释性的反事实扩散模型MoPaDi 首次将扩散自编码器应用于病理图像反事实解释生成,通过改变形态学特征翻转生物标志物状态 用户研究中原始图像正确识别率为63.3-73.3%,表明生成图像与真实图像仍存在一定差距 提高病理学中深度学习模型的可解释性 组织病理学全切片图像 数字病理学 癌症 扩散模型,多实例学习 扩散自编码器 图像 四个数据集(组织类型、不同器官癌症类型、切片中心来源、微卫星不稳定性生物标志物) NA MoPaDi 多尺度结构相似性指数,AUC,用户研究评估 NA
2753 2025-10-07
TIPPo: A User-Friendly Tool for De Novo Assembly of Organellar Genomes with High-Fidelity Data
2025-Jan-06, Molecular biology and evolution IF:11.0Q1
研究论文 介绍TIPPo——一种使用PacBio高保真长读长数据进行细胞器基因组从头组装的用户友好工具 首个不依赖相关物种基因组或核基因组信息的参考无关组装工具,采用深度学习模型进行初始读长分类并利用k-mer计数进行优化 NA 开发用于植物细胞器基因组组装的新工具 植物叶绿体和线粒体基因组 生物信息学 NA PacBio高保真长读长测序 深度学习模型 基因组测序数据 54个完整叶绿体基因组 NA NA 组装完整性 NA
2754 2025-10-07
Artificial Intelligence Recognition Model Using Liquid-Based Cytology Images to Discriminate Malignancy and Histological Types of Non-Small-Cell Lung Cancer
2025, Pathobiology : journal of immunopathology, molecular and cellular biology IF:3.5Q1
研究论文 开发基于深度学习卷积神经网络的肺癌细胞学图像自动分类模型 首次使用液基细胞学图像结合DenseNet-121深度学习模型对非小细胞肺癌的恶性程度和组织学类型进行自动识别 样本量相对有限,仅包含45例手术标本 开发用于肺癌细胞学诊断的人工智能图像识别模型 非小细胞肺癌的液基细胞学样本 计算机视觉 肺癌 液基细胞学,全玻片成像 CNN 图像 45例手术标本(8例正常肺组织,22例腺癌,15例鳞癌),共9141个图像块 NA DenseNet-121 敏感度,特异度,准确率 NA
2755 2025-10-07
Insights into AI advances in immunohistochemistry for effective breast cancer treatment: a literature review of ER, PR, and HER2 scoring
2025-Jan, Current medical research and opinion IF:2.4Q3
文献综述 本文综述了人工智能在乳腺癌免疫组化生物标志物自动评分中的最新进展 系统总结AI在ER、PR和HER2三种关键乳腺癌生物标志物自动评分中的技术现状与发展趋势 作为文献综述,不包含原始实验数据和新方法验证 改善乳腺癌诊断和治疗的准确性与效率 乳腺癌免疫组化图像中的ER、PR和HER2生物标志物 数字病理学 乳腺癌 免疫组化染色 机器学习,深度学习 图像 NA NA NA NA NA
2756 2025-10-07
Predicting the exposure of mycophenolic acid in children with autoimmune diseases using a limited sampling strategy: A retrospective study
2025-Jan, Clinical and translational science
研究论文 利用机器学习和深度学习算法开发儿童自身免疫疾病患者霉酚酸暴露量的预测模型,优化采样频率 首次将Wide&Deep等10种算法应用于儿童自身免疫疾病霉酚酸暴露量预测,证明仅需3个采样点即可达到与4个采样点相当的预测精度 回顾性研究,样本量有限(209名患者),仅来自单一医疗中心 开发霉酚酸暴露量预测模型以减少儿童患者的采血次数 患有自身免疫疾病的儿童患者 机器学习 自身免疫疾病 治疗药物监测 Random Forest, XGBoost, LightGBM, Gradient Boosting Decision Tree, CatBoost, Artificial Neural Network, Grandient Boosting Machine, Transformer, Wide&Deep, TabNet 血药浓度数据 209名患者的614个霉酚酸AUC样本 NA Wide&Deep, Transformer, TabNet R平方值, 准确度 NA
2757 2025-10-07
AI Methods for Antimicrobial Peptides: Progress and Challenges
2025-01, Microbial biotechnology IF:4.8Q1
综述 本文全面概述了人工智能方法在抗菌肽识别与设计领域的最新进展、挑战和机遇 深入探讨了大型语言模型、图神经网络和结构引导设计在抗菌肽研究中的潜力,填补了现有文献的空白 当前方法存在局限性,需要解决未来几年抗菌肽发现和设计中最相关的议题 提供抗菌肽研究中人工智能方法的综合评述 抗菌肽(AMPs) 机器学习 传染病 机器学习,深度学习 经典机器学习,深度学习,大型语言模型,图神经网络 肽序列数据,结构数据 NA NA LLMs, GNNs NA NA
2758 2025-10-07
Treatment efficacy prediction of focused ultrasound therapies using multi-parametric magnetic resonance imaging
2025, Cancer prevention, detection, and intervention : Third MICCAI Workshop, CaPTion 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings. CaPTion (Workshop) (3rd : 2024 : Marrakech, Morocco)
研究论文 开发基于多参数磁共振成像的深度学习框架,用于预测聚焦超声治疗乳腺癌的疗效 首次利用治疗期间获取的多参数MRI数据,通过深度学习框架实时预测聚焦超声治疗的疗效 研究样本量较小(N=6),仅在VX2肿瘤模型兔子中进行验证 提高聚焦超声治疗乳腺癌的疗效评估准确性和实时性 VX2肿瘤模型兔子 医学影像分析 乳腺癌 多参数磁共振成像,MRgFUS 深度学习 磁共振图像 6只VX2肿瘤模型兔子 NA NA 与专家标注的3天后治疗后图像对比 NA
2759 2025-10-07
Deep learning model to diagnose cardiac amyloidosis from haematoxylin/eosin-stained myocardial tissue
2025-Jan, European heart journal. Imaging methods and practice
研究论文 开发深度学习模型从HE染色心肌组织中诊断心脏淀粉样变性 首次使用HE染色心肌组织切片开发深度学习模型诊断心脏淀粉样变性,无需特殊染色 单中心回顾性研究,需要多中心前瞻性验证 开发辅助诊断心脏淀粉样变性的深度学习模型 心肌活检组织样本 数字病理 心脏淀粉样变性 HE染色,Dylon染色 深度学习模型 病理图像 166例患者(76例心脏淀粉样变性,90例其他诊断) NA NA AUC NA
2760 2025-10-07
LD-informed deep learning for Alzheimer's gene loci detection using WGS data
2025 Jan-Mar, Alzheimer's & dementia (New York, N. Y.)
研究论文 本研究开发了一种结合生物学知识的深度学习框架Deep-Block,用于从全基因组测序数据中识别与阿尔茨海默病相关的遗传位点 提出了一种多阶段深度学习框架,将连锁不平衡模式与稀疏注意力机制相结合,在降维过程中保留SNP相互作用 研究样本仅限于7416名非西班牙裔白人参与者,未包含其他种族群体 开发先进的分析工具来识别阿尔茨海默病相关的遗传区域 阿尔茨海默病相关的遗传位点和变异 机器学习 阿尔茨海默病 全基因组测序 TabNet, Random Forest 基因组测序数据 7416名非西班牙裔白人参与者(3150名认知正常老年人,4266名AD患者) NA 多阶段深度学习框架 eQTL分析,交叉验证 NA
回到顶部