本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 281 | 2025-12-10 |
Deep Drug Synergy Prediction Network Using Modified Triangular Mutation-Based Differential Evolution
2025-01, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3377631
PMID:38498748
|
研究论文 | 本文提出了一种名为EDNet的深度药物协同预测网络,用于改进癌症治疗中的药物组合协同预测 | 采用改进的基于三角突变的差分进化算法优化深度双向混合密度网络的初始连接权重和架构相关属性,以解决梯度消失、过拟合和参数调优问题 | NA | 提高药物组合协同预测的准确性,以优化癌症治疗效果 | 药物组合协同预测 | 机器学习 | 癌症 | NA | 深度双向混合密度网络 | 药物协同数据集 | 两个数据集:NCI-ALMANAC和deep-synergy | NA | EDNet | NA | NA |
| 282 | 2025-12-10 |
Utilizing Deep Learning to Identify Electron-Dense Deposits in Renal Biopsy Electron Microscopy Images
2025, American journal of nephrology
IF:4.3Q1
DOI:10.1159/000546131
PMID:40388893
|
研究论文 | 本研究开发了一个基于深度学习的平台,用于自动分类肾活检电子显微镜图像中电子致密沉积物的位置 | 首次利用深度学习自动分类肾活检电子显微镜图像中电子致密沉积物的位置,并开发了相应的网络平台 | 模型在评估沉积物存在和位置方面的准确性低于电子显微镜病理学家,但高于综合性肾病理学家 | 开发一个深度学习平台,自动分类肾活检电子显微镜图像中电子致密沉积物的位置 | 肾活检电子显微镜图像中的电子致密沉积物 | 数字病理学 | 肾脏疾病 | 电子显微镜 | CNN | 图像 | 从1039例肾活检中收集的4303张电子显微镜图像 | NA | ResNet18 | AUC, 准确率 | NA |
| 283 | 2025-12-09 |
Ethical and legal concerns in artificial intelligence applications for the diagnosis and treatment of lung cancer: a scoping review
2025, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2025.1663298
PMID:41164831
|
综述 | 本文通过范围综述探讨了人工智能在肺癌诊疗应用中的伦理与法律问题 | 系统性地识别并总结了AI在肺癌诊疗领域应用中最突出的伦理与法律关切点,特别是数据隐私、算法偏见及全球适用性差距 | 多数研究缺乏全面的法律分析,且文献主要来自高收入国家,全球视角不足,提出的解决方案未经验证且碎片化 | 评估人工智能在肺癌诊疗应用中的伦理与法律挑战 | 人工智能在肺癌筛查、诊断、治疗及预后中的应用 | 数字病理 | 肺癌 | NA | 深度学习 | 诊断影像 | 20篇符合纳入标准的文献 | NA | NA | NA | NA |
| 284 | 2025-12-09 |
Brain tumour segmentation in fused MRI-PET images with permutate U-Net framework
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0335952
PMID:41343590
|
研究论文 | 本文提出了一种基于Permutate U-Net框架的脑肿瘤分割方法,用于融合MRI-PET图像 | 设计了Permutate版本的U-Net架构,结合PCA融合MRI-PET图像以提高图像质量和分割精度 | NA | 自动精确地检测和分割脑肿瘤区域 | 脑肿瘤 | 数字病理学 | 脑肿瘤 | MRI-PET图像融合 | U-Net | 图像 | 使用BraTS 2015、2020和2021数据集 | NA | Permutate U-Net | Dice系数, IoU, 准确率 | NA |
| 285 | 2025-12-09 |
ConvLSTM-based tropical cyclone intensity estimation and classification using satellite imagery over the North Indian ocean
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0330705
PMID:41348707
|
研究论文 | 本研究提出了一种基于深度学习的框架,利用卫星图像序列对北印度洋的热带气旋进行检测、分类和强度估计 | 提出了一种混合架构,结合CNN和ConvLSTM共同学习时空模式,并引入了基于聚类的气旋区域隔离方法、序列级数据增强以及使用SMOTE缓解类别不平衡问题 | 未来工作需要通过集成学习、更复杂的架构或更大的数据集来提高模型的泛化能力 | 开发有效的热带气旋早期预警和灾害预防系统 | 北印度洋的热带气旋 | 计算机视觉 | NA | 卫星图像序列分析 | CNN, ConvLSTM | 图像序列 | CIMSS热带数据档案和IMD最佳路径数据集 | NA | VGG16, ConvLSTM | 准确率, RMSE | NA |
| 286 | 2025-12-08 |
Weakly Supervised Deep Learning Can Analyze Focal Liver Lesions in Contrast-Enhanced Ultrasound
2025, Digestion
IF:3.0Q2
DOI:10.1159/000545098
PMID:40049151
|
研究论文 | 本研究评估了一种弱监督深度学习模型在对比增强超声(CEUS)中区分恶性与良性肝脏局灶性病变(FLLs)的性能 | 采用弱监督注意力机制的多实例学习算法,无需手动标注,仅使用病例标签即可分类肝脏病变,并开发了可解释性方法以洞察模型决策 | 研究为回顾性可行性研究,样本来自单一三级医院,可能限制模型的泛化能力 | 评估弱监督深度学习模型在CEUS中自动分类肝脏局灶性病变恶性与良性的能力 | 肝脏局灶性病变(FLLs)患者 | 计算机视觉 | 肝脏疾病 | 对比增强超声(CEUS) | 深度学习 | 图像 | 370名患者,共955,938张图像(来自CEUS视频或手动捕获) | NA | 注意力机制的多实例学习算法 | AUC, 准确率, 灵敏度, 特异性, F1分数 | NA |
| 287 | 2025-12-08 |
Decoding brand sentiments: Leveraging customer reviews for insightful brand perception analysis using natural language processing and Tableau
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0334330
PMID:41343444
|
研究论文 | 本研究提出一个结合机器学习、深度学习、主题建模和交互式可视化的端到端分析流程,用于从智能手机客户评论中解码品牌情感和品牌感知 | 将基于CNN的情感分析与高一致性NMF主题建模相结合,并通过交互式Tableau仪表板提供商业洞察,超越了单一情感分析的传统方法 | 所有模型在处理中性评论时表现不佳,且存在因数据不平衡或文化细微语言差异导致的潜在偏见 | 利用自然语言处理技术分析客户评论,以获取可操作的品牌感知洞察并支持产品策略 | 亚马逊上十个智能手机品牌的客户评论 | 自然语言处理 | NA | NA | CNN, RNN, LSTM, Decision Trees, Logistic Regression, SVM, Naive Bayes | 文本 | 约68,000条评论 | NA | CNN, RNN, LSTM | 准确率, 一致性分数 | NA |
| 288 | 2025-12-08 |
Capsule-based federated reinforcement learning adaptive sliding mode for anomaly detection and control of floating wind turbines
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0336410
PMID:41343520
|
研究论文 | 本文提出了一种基于胶囊网络和联邦强化学习的自适应滑模控制方法,用于浮动风力发电机的异常检测与控制 | 结合联邦学习、胶囊网络和深度强化学习,实现分布式训练和自适应鲁棒控制,提高扰动检测的准确性和系统稳定性 | 研究基于仿真结果,未在真实环境中验证;未详细讨论计算资源需求和实际部署的挑战 | 开发一种智能控制机制,以增强浮动风力发电机在动态环境条件下的性能和稳定性 | 浮动风力发电机及其在海洋波浪和风扰动下的控制系统 | 机器学习 | NA | 联邦学习, 深度强化学习, 滑模控制 | 胶囊网络, 深度强化学习 | 传感器数据 | NA | NA | 胶囊网络 | 准确性, 稳定性 | NA |
| 289 | 2025-12-08 |
Advances in deep reinforcement learning enable better predictions of human behavior in time-continuous tasks
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0338034
PMID:41343519
|
研究论文 | 本研究利用深度强化学习模型预测人类在时间连续任务中的行为表现 | 首次将先进的深度Q网络模型(Ape-X和SEED)应用于人类行为建模,并验证其在时间连续任务中的预测能力优于传统模型 | 样本量较小(N=23),仅针对三种街机游戏任务,未涵盖更广泛的行为场景 | 探索深度强化学习模型在预测人类时间连续任务行为方面的有效性 | 人类参与者在三种街机游戏中的运动反应数据 | 机器学习 | NA | 深度强化学习 | DQN | 时间连续视觉刺激和运动反应数据 | 23名人类参与者 | NA | Ape-X, SEED, 基线DQN | 预测准确率 | NA |
| 290 | 2025-12-08 |
What does my network learn? Assessing interpretability of deep learning for EEG
2025, Imaging neuroscience (Cambridge, Mass.)
DOI:10.1162/IMAG.a.1033
PMID:41346402
|
研究论文 | 本文评估了深度学习在脑电图(EEG)数据中可解释性的影响因素,包括预处理选择、网络架构和特征提取可视化方法 | 通过比较两种卷积神经网络(ResNet和EEGNet)以及两种基于梯度的特征可视化技术(显著性和GradCam),揭示了不同架构和可视化方法对EEG数据可解释性的影响 | 研究仅针对视觉和听觉数据集,可能未涵盖所有EEG应用场景;可解释性评估主要基于特征相似性,缺乏更全面的量化指标 | 评估深度学习在EEG数据中的可解释性,并探讨如何通过网络架构和可视化方法改进解释性 | 单次试验EEG响应,包括对三种不同视觉刺激(视觉数据集)和声音存在(听觉数据集)的解码 | 机器学习 | NA | 脑电图(EEG) | CNN | 脑电图(EEG)数据 | NA | NA | ResNet, EEGNet | NA | NA |
| 291 | 2025-12-08 |
Using deep networks for knee range of motion monitoring in total knee arthroplasty rehabilitation
2025, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2025.1691591
PMID:41346475
|
研究论文 | 本研究提出了一种基于深度学习的膝关节活动度监测模型KROMNet,用于全膝关节置换术后的康复评估 | 开发了KROMNet模型,结合了卷积、空洞卷积和通道注意力层,在小样本条件下实现了高精度的膝关节活动度分类,优于现有方法 | 研究未明确说明模型在真实家庭环境中的泛化能力,且样本量相对有限 | 开发一种简单、准确、低成本的膝关节活动度评估方法,以支持社区和家庭康复 | 全膝关节置换术后患者的膝关节图像 | 计算机视觉 | 骨科疾病 | 深度学习 | CNN | 图像 | 从1,790名患者收集的1,103张膝关节图像 | 未指定 | KROMNet(包含卷积层、空洞卷积层、通道注意力层和全连接层) | 准确率, 精确率, 召回率, F1分数 | NA |
| 292 | 2025-12-08 |
Emerging technologies and neuroscience-based approaches in dyslexia: a narrative review toward integrative and personalized solutions
2025, Frontiers in human neuroscience
IF:2.4Q2
DOI:10.3389/fnhum.2025.1683924
PMID:41346795
|
综述 | 本文是一篇关于阅读障碍新兴技术与神经科学方法的叙述性综述,旨在探讨整合性与个性化解决方案 | 整合了神经科学机制与新兴技术(AI诊断、沉浸式工具、神经调控),提出了向个性化、可扩展解决方案转变的跨学科视角 | 研究方法存在异质性,样本量普遍较小,长期读写能力迁移证据有限,可推广性受限 | 综述阅读障碍的神经生物学基础、诊断技术创新、干预方法及政策伦理,推动整合性个性化解决方案 | 发展性阅读障碍(神经发育障碍)患者,重点关注儿童 | 自然语言处理, 数字病理 | 阅读障碍 | 眼动追踪, 手写分析, 神经调控(TMS, tDCS), VR/AR | 深度学习 | 眼动数据, 手写数据, 行为数据 | 多个试点研究,但样本量普遍较小 | NA | NA | 准确率 | NA |
| 293 | 2025-12-08 |
MTMixG-Net: mixture of Transformer and Mamba network with a dual-path gating mechanism for plant gene expression prediction
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1718258
PMID:41346834
|
研究论文 | 提出了一种名为MTMixG-Net的新型深度学习框架,用于植物基因表达预测,该框架结合了Transformer和Mamba架构,并引入了双路径门控机制 | 首次将Transformer的自注意力能力与Mamba的状态空间效率相结合,并引入双路径门控机制,以捕获多尺度调控依赖性,同时保持较低的计算复杂度 | 未明确提及模型在跨物种泛化能力方面的具体限制,也未讨论对未知植物物种的适用性 | 提高植物基因表达的预测准确性,以阐明植物发育和应激适应的调控机制 | 植物基因组数据 | 机器学习 | NA | 深度学习 | Transformer, Mamba, CNN | 基因组序列数据 | 多个植物基因组数据集(具体数量未提及) | NA | MTMixEnc(混合Transformer和Mamba编码器), DPGM(双路径门控机制), ResCNNChn(残差CNN链) | 准确性, 计算效率 | NA |
| 294 | 2025-12-08 |
Comparative analysis of optimized logistic regression with state-of-the-art models for complex gastroenterological image analysis
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1655612
PMID:41346992
|
研究论文 | 本文比较了优化的逻辑回归与多种先进机器学习模型在胃肠息肉图像多分类任务中的性能 | 在低数据场景下,通过系统优化逻辑回归并与多种机器学习模型对比,发现集成方法(如XGBoost)在保持临床可解释性的同时实现了更高的分类性能 | 样本量较小(仅152个实例),且未使用深度学习模型,可能限制了在更复杂图像特征下的性能上限 | 评估和比较机器学习模型在胃肠息肉图像多分类中的性能,以支持临床决策 | 结肠镜图像中检测到的胃肠道息肉 | 机器学习 | 结直肠癌 | 结肠镜成像 | 逻辑回归, k近邻, 支持向量机, 随机森林, XGBoost | 图像 | 152个实例,包含698个提取特征 | Scikit-learn | NA | 准确率, 宏平均F1分数 | NA |
| 295 | 2025-12-07 |
C-HDNet: A Fast Hyperdimensional Computing Based Method for Causal Effect Estimation from Networked Observational Data
2025, Social network analysis and mining
IF:2.3Q3
DOI:10.1007/s13278-025-01502-2
PMID:41143237
|
研究论文 | 本文提出了一种基于超维计算的因果效应估计方法,用于处理网络观测数据中的网络混淆问题 | 利用超维计算原理编码和整合网络结构信息,实现更准确的个体匹配,显著降低计算复杂度 | 未明确说明方法对网络结构假设的敏感性或处理极端稀疏/稠密网络的适用性 | 从存在网络干扰的观测数据中估计因果效应 | 网络结构中的个体及其邻居影响 | 机器学习 | NA | 超维计算 | NA | 网络观测数据 | 多个基准数据集(未指定具体数量) | NA | C-HDNet | 准确性,运行时间 | NA |
| 296 | 2025-12-07 |
PixlMap: A generalisable pixel classifier for cellular phenotyping in multiplex immunofluorescence images
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0317865
PMID:41335594
|
研究论文 | 本文提出了一种名为PixlMap的通用像素分类器,用于在多重免疫荧光图像中进行细胞表型分析,无需依赖准确的细胞边界分割 | 该方法创新性地利用人类视觉能力,仅基于核分割即可准确进行细胞表型分析,无需整个细胞分割,且训练仅需每种区室染色(核/细胞质/膜)的单个示例 | 未明确提及具体局限性,但暗示现有细胞分割方法存在信息丢失和数据污染问题 | 开发一种通用且易于使用的深度学习方法,用于细胞表型分析,以解决多重免疫荧光图像解释中的分析挑战 | 多重免疫荧光图像中的细胞 | 数字病理学 | NA | 多重免疫荧光成像 | 深度学习 | 图像 | NA | 商业深度学习图像分析平台 | U-Net | 与基于强度的表型分析方法在准确性上相当 | NA |
| 297 | 2025-12-07 |
COVID-19 Persian Misinformation Detection on Instagram: A Comparative Analysis of Machine Learning and Deep Learning Methods
2025 Jan-Dec, Healthcare technology letters
IF:2.8Q3
DOI:10.1049/htl2.70036
PMID:41340910
|
研究论文 | 本研究通过构建波斯语Instagram评论数据集,比较了多种机器学习和深度学习方法在检测COVID-19相关虚假信息上的性能 | 首次针对波斯语COVID-19虚假信息建立了综合性能基准,并构建了包含27,000条标注评论的新数据集 | 研究仅聚焦于波斯语内容,未涵盖其他语言;数据集规模相对有限 | 检测社交媒体上的虚假信息,特别是非英语语言的COVID-19相关误导内容 | Instagram平台上的波斯语评论 | 自然语言处理 | COVID-19 | 文本挖掘,词嵌入 | XGBoost, LSTM, CNN, KNN, BERT | 文本 | 27,000条波斯语评论 | TensorFlow, PyTorch, Scikit-learn | LSTM, CNN, BERT | 准确率, 精确率, 召回率, F1分数 | 未明确指定 |
| 298 | 2025-12-07 |
Detection of leptomeningeal angiomas in brain MRI of Sturge-Weber syndrome using multi-scale multi-scan Mamba
2025, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2025.1699700
PMID:41341263
|
研究论文 | 本研究提出了一种基于Mamba的编码器-解码器架构,结合多尺度多扫描策略,用于在Sturge-Weber综合征患者的脑部MRI中自动检测软脑膜血管瘤 | 采用多尺度多扫描策略将3D体积转换为1D序列,以较低计算复杂度捕获长程依赖,并首次将Mamba架构应用于软脑膜血管瘤的自动检测 | 数据集规模较小(仅40名患者),且模型性能在SWS数据集上的Dice分数(78.67%)虽优于现有方法,但仍低于在BraTS数据集上的表现(91.53%) | 研究Sturge-Weber综合征中软脑膜血管瘤的自动检测方法,以实现临床自动化诊断 | Sturge-Weber综合征患者的脑部MRI图像 | 计算机视觉 | Sturge-Weber综合征 | MRI | Mamba | 图像 | 40名SWS患者的T1增强MRI数据,并使用公共BraTS数据集进行预训练 | NA | 基于Mamba的编码器-解码器架构 | Dice分数 | NA |
| 299 | 2025-12-07 |
YOLO-PLNet: a lightweight real-time detection model for peanut leaf diseases based on edge deployment
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1707501
PMID:41341300
|
研究论文 | 本研究提出了一种名为YOLO-PLNet的轻量级实时检测模型,专为花生叶部病害的边缘设备部署而设计 | 在YOLO11n基础上,对主干网络和Neck结构进行轻量化改进,引入了轻量注意力增强卷积模块以降低计算开销,并融合通道-空间注意力机制来增强对小病灶和边缘模糊目标的特征表示,同时检测头采用渐进特征金字塔网络以提升多尺度检测性能 | NA | 实现花生叶部病害的早期准确检测,并平衡模型大小、实时检测精度与边缘设备部署需求 | 花生叶部病害 | 计算机视觉 | NA | NA | CNN | 图像, 视频 | NA | NA | YOLO11n, YOLO-PLNet | mAP@0.5, mAP@0.5:0.95, 延迟, FPS, GPU使用率, 功耗 | Jetson Orin NX平台, CSI摄像头实时视频输入, FP16精度, INT8精度 |
| 300 | 2025-12-07 |
Species-level detection of thrips and whiteflies on yellow sticky traps using YOLO-based deep learning detection models
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1668795
PMID:41341315
|
研究论文 | 本研究评估了基于YOLO的深度学习检测模型在非显微RGB黄色粘虫板图像上实时进行物种级别检测蓟马和白粉虱的潜力与局限性 | 首次实现了在黄色粘虫板图像上对蓟马和白粉虱进行有效的物种级别检测,为针对性害虫控制策略提供了可能 | 研究仅针对特定类型的黄色粘虫板和有限害虫物种,未来需扩展至更多害虫种类、粘虫板类型和环境光照条件 | 开发一种实时、自动化的物种级别害虫监测系统,以减少农药使用并提高农业产量 | 蓟马(Frankliniella occidentalis 和 Thrips tabaci)和白粉虱(Trialeurodes vaporariorum 和 Bemisia tabaci) | 计算机视觉 | NA | 深度学习图像检测 | YOLO | 图像 | 一个平衡且标注的图像数据集,包含在一种黄色粘虫板上捕获的害虫物种 | NA | YOLO11, YOLO-NAS | mAP@50, F1@50, AP@50 | NA |