本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
521 | 2025-05-03 |
PPDock: Pocket Prediction-Based Protein-Ligand Blind Docking
2025-Jan-27, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c01373
PMID:39814581
|
研究论文 | 提出了一种基于口袋预测的蛋白质-配体盲对接方法PPDock,通过两阶段对接范式显著提高了对接准确性和效率 | 采用两阶段对接范式(口袋预测后进行基于口袋的对接),克服了传统方法难以识别正确口袋的问题 | 未明确说明方法在超大规模蛋白质复合体上的适用性 | 提升蛋白质-配体盲对接的准确性和效率以促进药物发现 | 蛋白质结合位点(口袋)与配体的对接构象 | 计算生物学 | NA | 深度学习 | PPDock(新型盲对接架构) | 蛋白质结构数据 | 基准测试数据集(未明确数量) |
522 | 2025-05-03 |
A fusion model of manually extracted visual features and deep learning features for rebleeding risk stratification in peptic ulcers
2025-Jan-20, Nan fang yi ke da xue xue bao = Journal of Southern Medical University
|
研究论文 | 提出了一种基于内窥镜图像手动提取特征和深度学习特征的多特征融合模型,用于评估消化性溃疡再出血风险 | 首次将手动提取的视觉特征与深度学习特征融合,用于消化性溃疡再出血风险分级 | 研究样本仅包含708名患者,可能存在一定的数据偏差 | 提高消化性溃疡再出血风险分级的准确性 | 消化性溃疡患者的内窥镜图像 | 数字病理学 | 消化性溃疡 | 深度学习特征提取与手动视觉特征提取 | CNN | 图像 | 708名患者的3573张内窥镜图像 |
523 | 2025-05-03 |
A multi-modal dental dataset for semi-supervised deep learning image segmentation
2025-Jan-20, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-024-04306-9
PMID:39833232
|
research paper | 本文介绍了一个用于半监督深度学习图像分割的多模态牙科数据集STS-Tooth,包括STS-2D-Tooth和STS-3D-Tooth | 首个结合牙科全景X射线图像(PXI)和锥形束计算机断层扫描(CBCT)的多模态数据集,也是最大的牙齿分割数据集 | 未提及具体的技术性能指标或与其他方法的比较结果 | 推动牙齿分割技术的发展,解决公开牙科数据集稀缺的问题 | 牙齿分割 | digital pathology | dental disease | semi-supervised deep learning | NA | image | STS-2D-Tooth包含4,000张图像和900个掩模,STS-3D-Tooth包含148,400个未标记扫描和8,800个掩模 |
524 | 2025-05-03 |
Deep-learning based electromagnetic navigation system for transthoracic percutaneous puncture of small pulmonary nodules
2025-Jan-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-85209-6
PMID:39833245
|
研究论文 | 开发了一种基于深度学习的电磁导航穿刺系统,用于经皮穿刺小型肺结节 | 结合多种深度学习模型与电磁及空间定位技术,开发了新型电磁导航穿刺系统 | 研究仅在体模和动物模型中进行,尚未在人体临床试验中验证 | 提高经皮穿刺小型肺结节的技术成功率和操作效率 | 小型肺结节 | 数字病理 | 肺癌 | 电磁导航技术 | 深度学习模型 | 医学影像 | 体模和动物模型(具体数量未提及) |
525 | 2025-05-03 |
Deep learning algorithms for predicting pathological complete response in MRI of rectal cancer patients undergoing neoadjuvant chemoradiotherapy: a systematic review
2025-Jan-20, International journal of colorectal disease
IF:2.5Q1
DOI:10.1007/s00384-025-04809-w
PMID:39833443
|
系统综述 | 本文系统综述了深度学习算法在预测直肠癌患者新辅助放化疗后病理完全缓解中的效用 | 评估基于MRI的人工智能模型性能,并探讨影响其诊断准确性的因素 | 模型设计、MRI协议存在异质性,临床数据整合有限 | 评估AI模型在预测直肠癌患者新辅助放化疗后病理完全缓解中的性能 | 直肠癌患者 | 数字病理 | 直肠癌 | MRI(T2W和DWI序列) | 深度学习模型 | MRI图像 | 26项研究符合纳入标准 |
526 | 2025-05-03 |
Towards a decision support system for post bariatric hypoglycaemia: development of forecasting algorithms in unrestricted daily-life conditions
2025-Jan-20, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-025-02856-5
PMID:39833876
|
research paper | 开发基于线性和深度学习模型的算法,用于预测减肥手术后低血糖事件 | 首次在无限制日常生活条件下开发预测减肥手术后低血糖事件的算法 | 仅使用连续血糖监测数据作为单一输入,数据噪声和餐后血糖快速变化是主要挑战 | 开发决策支持系统以预警减肥手术后低血糖事件 | 50名接受Roux-en-Y胃旁路手术后出现低血糖的患者 | machine learning | geriatric disease | CGM | rAR, deep learning models | CGM data | 50名患者,监测长达50天 |
527 | 2025-05-03 |
Interpretable machine learning model for outcome prediction in patients with aneurysmatic subarachnoid hemorrhage
2025-Jan-20, Critical care (London, England)
DOI:10.1186/s13054-024-05245-y
PMID:39833976
|
研究论文 | 开发了一种可解释的深度学习模型,用于预测动脉瘤性蛛网膜下腔出血患者的功能结局 | 利用SHAP增强模型的可解释性,并确认年龄、世界神经外科医师联合会分级和高级脑功能障碍为关键预测因素 | 研究仅基于日本五家医院的数据,可能限制了模型的普遍适用性 | 优化动脉瘤性蛛网膜下腔出血患者的治疗策略 | 718名动脉瘤性蛛网膜下腔出血患者 | 机器学习 | 动脉瘤性蛛网膜下腔出血 | 深度学习 | 深度学习模型 | 临床数据 | 718名患者 |
528 | 2025-05-03 |
Optimizing papermaking wastewater treatment by predicting effluent quality with node-level capsule graph neural networks
2025-Jan-18, Environmental monitoring and assessment
IF:2.9Q3
DOI:10.1007/s10661-024-13581-3
PMID:39825037
|
研究论文 | 提出一种基于节点级胶囊图神经网络的造纸废水处理方法,用于预测出水质量 | 使用节点级胶囊图神经网络(NLCGNN)结合Hermit Crab优化(HCO)算法,提高了化学需氧量(COD)预测的准确性、精确度和灵敏度 | 未提及该方法在其他类型废水处理中的适用性或实际工业环境中的部署挑战 | 优化造纸废水处理过程中的出水质量预测 | 造纸废水处理过程中的化学需氧量(COD)指标 | 机器学习 | NA | 节点级胶囊图神经网络(NLCGNN),Hermit Crab优化(HCO)算法 | NLCGNN | 工业废水处理过程数据 | NA |
529 | 2025-05-03 |
ds-FCRN: three-dimensional dual-stream fully convolutional residual networks and transformer-based global-local feature learning for brain age prediction
2025-Jan-18, Brain structure & function
IF:2.7Q3
DOI:10.1007/s00429-024-02889-y
PMID:39826018
|
研究论文 | 本研究开发了一种结合3D双流全卷积残差网络和Transformer的深度学习模型,用于基于灰质密度图的脑年龄预测 | 提出创新的3D双流全卷积残差网络(ds-FCRN)结合Transformer的全局-局部特征学习范式,并使用Shapley值解释不同脑区对预测精度的影响 | 研究仅基于健康参与者数据,未考虑疾病状态对脑年龄预测的影响 | 开发具有高预测准确性和可解释性的脑年龄预测深度学习模型 | 来自UKB数据库的16,377名45-82岁健康参与者的灰质密度图 | 数字病理学 | 老年疾病 | T1 MRI | 3D ds-FCRN + Transformer | 医学影像 | 16,377名健康参与者(训练集) + 3,276名健康参与者(测试集) |
530 | 2025-05-03 |
Predicting metabolite response to dietary intervention using deep learning
2025-Jan-18, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-56165-6
PMID:39827177
|
研究论文 | 开发了一种名为McMLP的深度学习方法,用于预测个体对饮食干预的代谢反应 | 首次将深度学习方法(McMLP)应用于基于肠道微生物组成的代谢反应预测,填补了该领域的空白 | 未提及具体样本量的限制或模型在其他数据集上的泛化能力 | 实现精准营养,通过预测代谢反应来设计个性化的饮食策略 | 个体的肠道微生物组成及其对饮食干预的代谢反应 | 机器学习 | NA | 深度学习 | McMLP(耦合多层感知器) | 合成数据和真实数据(来自六项饮食干预研究) | 未明确提及具体样本数量 |
531 | 2025-05-03 |
Biologically relevant integration of transcriptomics profiles from cancer cell lines, patient-derived xenografts, and clinical tumors using deep learning
2025-Jan-17, Science advances
IF:11.7Q1
DOI:10.1126/sciadv.adn5596
PMID:39823329
|
研究论文 | 开发了一种名为MOBER的深度学习方法,用于整合癌症细胞系、患者来源的异种移植模型和临床肿瘤的转录组学数据,以提高临床转化性 | 提出了MOBER方法,能够同时提取具有生物学意义的嵌入信息并去除混杂因素,从而识别与临床肿瘤转录相似性最高的临床前模型 | 未明确提及具体局限性,但可能包括数据集的多样性和模型泛化能力的验证 | 提高癌症研究中临床前模型的临床转化性 | 癌症细胞系、患者来源的异种移植模型和临床肿瘤 | 机器学习 | 癌症 | 转录组学分析 | 深度学习 | 转录组数据 | 932个癌症细胞系、434个患者来源的异种移植模型和11,159个临床肿瘤样本 |
532 | 2025-05-03 |
Explainable Predictive Model for Suicidal Ideation During COVID-19: Social Media Discourse Study
2025-Jan-17, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/65434
PMID:39823631
|
研究论文 | 该研究利用自然语言处理技术分析社交媒体文本,开发可解释的自杀意念预测模型 | 提出混合深度学习网络架构(BERT+CNN+LSTM)并结合可解释AI技术分析COVID-19期间自杀意念特征变化 | 研究样本中自杀相关帖子比例较低(0.9%),可能影响模型泛化能力 | 检测COVID-19疫情期间社交媒体中表现的自杀意念并分析其影响因素 | 社交媒体用户发布的文本内容 | 自然语言处理 | 心理健康疾病 | TF-IDF, Word2vec, BERT, LIME, SHAP | BERT+CNN+LSTM混合模型 | 文本 | 从348,110条记录中筛选3,154条(1,338条自杀相关,1,816条非自杀相关) |
533 | 2025-05-03 |
Preparing physiotherapists for the future: the development and evaluation of an innovative curriculum
2025-Jan-17, BMC medical education
IF:2.7Q1
DOI:10.1186/s12909-024-06537-1
PMID:39825299
|
研究论文 | 本研究评估了荷兰HAN应用科学大学物理治疗系设计的创新课程PACE的实施情况 | PACE课程采用基于预设学习成果、个性化学习目标、灵活学习路径和程序化评估的综合学习方法,区别于传统教育 | 需要改进自主学习支持和促进深度学习的教学策略 | 评估创新课程PACE的实施效果,为未来课程开发提供信息 | 2021-2022年度的本科物理治疗学生和参与该课程的教师 | 教育创新 | NA | 混合方法设计,包括问卷、焦点小组、深度访谈和全国进度测试 | NA | 问卷数据、访谈数据和测试成绩 | 82名一年级学生和36名教师 |
534 | 2025-05-03 |
Machine learning models for predicting postoperative peritoneal metastasis after hepatocellular carcinoma rupture: a multicenter cohort study in China
2025-Jan-17, The oncologist
DOI:10.1093/oncolo/oyae341
PMID:39832130
|
研究论文 | 本研究利用机器学习模型预测肝细胞癌破裂后腹膜转移的风险 | 首次比较了五种机器学习模型在预测肝细胞癌破裂后腹膜转移中的表现,并发现深度学习模型表现最佳 | 研究仅基于中国多中心数据,可能无法推广到其他人群 | 开发预测肝细胞癌破裂后腹膜转移的最佳机器学习模型 | 522名接受手术的肝细胞癌破裂患者 | 机器学习 | 肝细胞癌 | 机器学习模型比较 | 逻辑回归、支持向量机、分类树、随机森林、深度学习 | 临床数据 | 522名患者(来自7个医疗中心) |
535 | 2025-05-03 |
TopoQual polishes circular consensus sequencing data and accurately predicts quality scores
2025-Jan-16, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-024-06020-0
PMID:39815230
|
research paper | 介绍了一种名为TopoQual的新工具,旨在提高PacBio HiFi测序数据的碱基质量预测准确性 | TopoQual利用部分顺序比对(POA)、拓扑平行碱基和深度学习算法来优化共识序列,显著提高了碱基质量预测的准确性 | 目前的研究主要集中在PacBio HiFi测序数据上,对于其他测序技术的适用性尚未验证 | 提高PacBio HiFi测序数据在体细胞变异检测中的碱基质量预测准确性 | PacBio HiFi测序数据 | genomics | NA | circular consensus sequencing (CCS), high fidelity (HiFi) technology, partial order alignments (POA), deep learning | deep learning algorithms | sequencing data | NA |
536 | 2025-05-03 |
Mitochondrial segmentation and function prediction in live-cell images with deep learning
2025-Jan-16, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-55825-x
PMID:39820041
|
研究论文 | 介绍了一种名为MoDL的深度学习算法,用于线粒体图像分割和功能预测 | MoDL算法通过集成学习策略和大规模数据集训练,能够从未见过的细胞类型中精确预测异质性线粒体的功能 | 需要手动标注大量线粒体图像,且在小样本训练中可能面临挑战 | 探索线粒体形态与功能之间的复杂关系,并预测线粒体功能 | 线粒体的形态和功能 | 计算机视觉 | NA | 超分辨率成像(SR) | 深度学习算法(MoDL) | 图像 | 20,000个手动标注的线粒体图像用于训练,超过100,000个SR图像用于功能预测 |
537 | 2025-05-03 |
PHARAOH: A collaborative crowdsourcing platform for phenotyping and regional analysis of histology
2025-Jan-16, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-55780-z
PMID:39820318
|
research paper | 介绍了一个名为PHARAOH的在线协作平台,旨在简化组织图像注释流程,促进定制计算机视觉模型的开发与共享 | 采用弱监督、人机交互学习框架,通过组织大块组织为形态学均匀的簇进行批量注释,提高了注释效率 | 平台的成功依赖于专家注释的质量和数量,可能存在注释偏差 | 促进计算病理学应用的扩展、泛化和分类 | 组织图像 | digital pathology | NA | weakly supervised learning, human-in-the-loop learning | custom computer vision models | image | NA |
538 | 2025-05-03 |
Predicting Paediatric Brain Disorders from MRI Images Using Advanced Deep Learning Techniques
2025-Jan-16, Neuroinformatics
IF:2.7Q3
DOI:10.1007/s12021-024-09707-0
PMID:39821839
|
研究论文 | 本文提出了一种基于先进深度学习技术的系统,用于从MRI图像中预测儿童脑部疾病 | 使用了多种先进的CNN模型(如EfficientNetB0、InceptionResNetV2等)并结合数据可视化技术进行特征提取,显著提高了疾病预测的准确率 | 研究仅基于MRI图像,未考虑其他临床数据或多种模态数据的融合 | 开发高效准确的AI系统以辅助儿童脑部疾病的诊断和管理 | 儿童脑部疾病的MRI图像 | 数字病理学 | 儿童脑部疾病 | MRI成像 | CNN(包括EfficientNetB0、InceptionResNetV2等多种变体) | 图像 | 未明确提及具体样本数量 |
539 | 2025-05-03 |
Causality-driven candidate identification for reliable DNA methylation biomarker discovery
2025-Jan-15, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-56054-y
PMID:39814752
|
研究论文 | 提出了一种基于因果驱动的深度正则化框架,用于可靠地识别DNA甲基化生物标志物候选 | 结合因果思维、深度学习和生物先验知识,通过对比方案和空间关系正则化处理非因果混杂因素 | 未明确提及具体局限性 | 提高DNA甲基化生物标志物发现的可靠性,减少资源浪费 | DNA甲基化生物标志物候选 | 生物信息学 | 多种人类疾病 | DNA甲基化测序 | 深度学习 | DNA甲基化数据 | 涉及多种人类疾病、样本来源和测序技术的模拟和应用 |
540 | 2025-05-03 |
Fast and accurate deep learning scans for signatures of natural selection in genomes using FASTER-NN
2025-Jan-15, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-025-07480-7
PMID:39814854
|
research paper | 介绍了一种名为FASTER-NN的深度学习模型,用于在基因组中快速准确地检测自然选择的特征 | FASTER-NN通过扩张卷积处理等位基因频率和基因组位置,提高了检测自然选择的敏感性,且执行时间不受样本大小和染色体长度的影响 | 未提及具体的局限性 | 开发一种能够精确检测自然选择特征的深度学习分类器 | 基因组中的自然选择特征 | machine learning | NA | CNN | FASTER-NN | genomic data | NA |