深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202501] [清除筛选条件]
当前共找到 2526 篇文献,本页显示第 541 - 560 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
541 2025-06-07
MultiCubeNet: Multitask deep learning for molecular subtyping and prognostic prediction in gliomas
2025 Jan-Dec, Neuro-oncology advances IF:3.7Q2
research paper 开发并验证了一个名为MultiCubeNet的多任务深度学习模型,用于同时预测胶质瘤的关键分子标记和预后 提出了一个多序列、多尺度、多任务的深度学习框架,能够同时预测IDH突变、1p/19q共缺失、TERT启动子突变和预后 在TCGA队列中的性能不太理想,AUC值低于0.8 开发一个深度学习模型,用于胶质瘤的分子亚型和预后预测 457例成人型弥漫性胶质瘤(193例训练队列;162例和102例分别在SZS和TCGA验证队列中) digital pathology glioma deep learning MultiCubeNet image 457例成人型弥漫性胶质瘤
542 2025-06-07
Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images
2025, Simplifying medical ultrasound : 5th international workshop, ASMUS 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, proceedings. ASMUS (Workshop) (5th : 2024 : Marrakech, Morocco)
research paper 本文评估了3D交互式分割模型在人机协作胎盘分割任务中的表现,并提出了一种高效的人机交互模型 首次将人机交互模型应用于3D超声图像胎盘分割任务,并验证其有效性 未说明模型在临床环境中的实际应用效果 开发高效的3D超声图像胎盘分割方法 3D超声图像中的胎盘组织 digital pathology 产科疾病 3D超声成像 interactive segmentation model (基于SAM) 3D医学图像 未明确说明样本数量
543 2025-06-07
Advancements and challenges of artificial intelligence in climate modeling for sustainable urban planning
2025, Frontiers in artificial intelligence IF:3.0Q2
Mini Review 探讨人工智能在气候建模中的进展与挑战,以促进可持续城市规划 综述了机器学习和深度学习技术在提高气候风险评估、资源优化和基础设施韧性方面的最新进展 数据质量不一致、模型可解释性限制、伦理问题以及AI模型在不同城市环境中的可扩展性 促进气候适应和可持续城市规划 气候建模和城市规划 机器学习 NA 机器学习和深度学习 ML和DL 多源数据 NA
544 2025-06-07
BrainTumNet: multi-task deep learning framework for brain tumor segmentation and classification using adaptive masked transformers
2025, Frontiers in oncology IF:3.5Q2
research paper 开发了一个名为BrainTumNet的多任务深度学习框架,用于脑肿瘤的分割和分类 结合了改进的编码器-解码器架构、自适应掩码Transformer和多尺度特征融合策略,实现了肿瘤分割和分类的多任务学习 研究仅基于485例病理确诊的病例,样本量可能不足以覆盖所有脑肿瘤类型和变异 开发一个多任务深度学习模型,用于精确的脑肿瘤分割和类型分类 高级别胶质瘤、转移性肿瘤和脑膜瘤的T1增强MRI序列图像 digital pathology brain tumor MRI CNN, Transformer image 485例病理确诊的病例(训练集378例,测试集109例,外部验证集51例)
545 2025-06-07
A novel method of BiFormer with temporal-spatial characteristics for ECG-based PVC detection
2025, Frontiers in physiology IF:3.2Q2
研究论文 提出了一种结合BiFormer模型和时空特征的ECG信号处理方法,用于检测室性早搏(PVC) 使用BiFormer分类模型和Bi-level Routing Attention机制,结合Markov Transition Fields将一维时间序列信号转换为二维图像,提高了PVC检测的准确性和计算效率 NA 开发一种更准确和高效的ECG信号分析方法,用于早期检测室性早搏(PVC) ECG信号 机器学习 心血管疾病 Markov Transition Fields (MTFs), Bi-level Routing Attention (BRA) BiFormer ECG信号 MIT-BIH心律失常数据库
546 2025-06-07
YOLO for early detection and management of Tuta absoluta-induced tomato leaf diseases
2025, Frontiers in plant science IF:4.1Q1
研究论文 该研究利用YOLOv8模型进行Tuta absoluta引起的番茄叶部病害的早期检测与管理 首次公开了一个名为TomatoEbola的数据集,并提出了基于迁移学习的方法评估YOLOv8在检测Tuta absoluta中的性能 数据集样本量较小,仅包含326张图像和784个标注,可能影响模型的泛化能力 通过AI技术提高农业病害检测效率,减少作物损失并增强粮食安全 番茄叶部病害(由Tuta absoluta引起) 计算机视觉 植物病害 迁移学习 YOLOv8 图像 326张图像和784个标注,来自三个不同的农场
547 2025-06-06
Enhancing predictive accuracy for urinary tract infections post-pediatric pyeloplasty with explainable AI: an ensemble TabNet approach
2025-01-19, Scientific reports IF:3.8Q1
research paper 本研究开发了一种结合机器学习和深度学习的集成模型,用于预测小儿肾盂成形术后尿路感染的风险 首次提出结合机器学习和深度学习的集成预测模型,利用SHAP解释模型提供临床风险因素新见解 研究证据等级为IV级,缺乏对照组比较 提高小儿肾盂成形术后尿路感染的预测准确性 764例接受单侧肾盂成形术的儿科患者 machine learning urinary tract infection ensemble learning, SHAP TabNet, Logistic Regression, SVM, Random Forest, XGBoost, LightGBM clinical features 764例儿科患者
548 2025-06-06
Deep learning in Cobb angle automated measurement on X-rays: a systematic review and meta-analysis
2025-Jan, Spine deformity IF:1.6Q3
系统综述与荟萃分析 本文综述了深度学习算法在X光片上自动测量Cobb角的应用,并进行了荟萃分析 比较了基于分割和基于标志点的深度学习方法的准确性,并提出了改进模型设计的潜在方法 荟萃分析结果有限,存在高度异质性 评估深度学习算法在Cobb角自动测量中的性能 X光片上的Cobb角测量 计算机视觉 脊柱侧弯 深度学习算法 NA X光图像 50项研究纳入系统综述,17项研究纳入荟萃分析(共3022例样本)
549 2025-06-06
A Deep Learning-Based Method for Rapid 3D Whole-Heart Modeling in Congenital Heart Disease
2025, Cardiology IF:1.9Q3
研究论文 开发了一种基于深度学习的快速三维心脏建模方法,用于先天性心脏病患者的术前规划和诊断支持 整合医学影像和临床诊断信息,通过深度学习自动生成3D打印和VR应用的心脏模型 研究样本量较小(110例患者),未来需在更大数据集和不同类型先天性心脏病上验证模型的广泛适用性 提高先天性心脏病手术规划和诊断的精确性 先天性心脏病患者 数字病理学 先天性心脏病 CT、心脏MRI 深度学习模型 医学影像、临床数据 110例患者
550 2025-06-06
GCLmf: A Novel Molecular Graph Contrastive Learning Framework Based on Hard Negatives and Application in Toxicity Prediction
2025-Jan, Molecular informatics IF:2.8Q2
research paper 提出了一种基于硬负样本的分子图对比学习框架GCLmf,用于毒性预测 利用特定条件的分子片段作为硬负样本,提升负样本集质量,从而在预训练中学习更具信息量的分子表示 未明确提及模型在数据稀缺情况下的表现或泛化能力 提高化学毒性预测的准确性和鲁棒性 分子图数据 machine learning NA 对比学习(自监督学习) GCLmf(基于深度学习的分子图对比学习框架) 分子图数据 在33个毒性任务上进行评估,具体样本量未明确说明
551 2025-06-06
Diagnostic accuracy of deep learning-based algorithms in laryngoscopy: a systematic review and meta-analysis
2025-Jan, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery IF:1.9Q2
meta-analysis 该研究通过系统综述和荟萃分析评估深度学习在喉镜检查中诊断喉癌的准确性 首次对深度学习在喉镜检查中的诊断效用进行系统评价和荟萃分析 仅纳入9项研究,样本量虽大但研究数量有限 评估深度学习算法在喉镜检查中诊断喉癌的准确性 喉镜检查图像 digital pathology laryngeal cancer 深度学习 NA image 106,175张内窥镜图像
552 2025-06-06
Overcoming the preferred-orientation problem in cryo-EM with self-supervised deep learning
2025-Jan, Nature methods IF:36.1Q1
research paper 该论文开发了一种名为spIsoNet的自监督深度学习软件,用于解决冷冻电镜中的粒子取向偏差问题 提出了一种端到端的自监督深度学习方法,无需额外的样本制备过程即可解决冷冻电镜中的取向偏差问题 NA 解决冷冻电镜中粒子取向偏差导致的图像各向异性和粒子错位问题 冷冻电镜图像数据,包括核糖体、β-半乳糖苷酶和血凝素三聚体数据集 计算机视觉 NA 冷冻电镜 深度学习 图像 多个代表性生物系统数据集
553 2025-06-06
Deep learning-based optical coherence tomography and retinal images for detection of diabetic retinopathy: a systematic and meta analysis
2025, Frontiers in endocrinology IF:3.9Q2
meta-analysis 本文通过系统综述和荟萃分析评估了深度学习算法在光学相干断层扫描(OCT)和视网膜图像中检测糖尿病视网膜病变(DR)的有效性 首次对深度学习在OCT和视网膜图像中检测DR的效果进行了全面的荟萃分析 数据集标准化不足,模型可解释性有待提高,且需在多样化人群中进一步验证性能 评估深度学习算法在糖尿病视网膜病变检测中的准确性和可靠性 光学相干断层扫描(OCT)和视网膜图像 digital pathology diabetic retinopathy deep learning NA image 188268张视网膜图像和OCT扫描
554 2025-06-06
Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning
2025, PloS one IF:2.9Q1
研究论文 本研究评估了结合内存高效学习(MEL)的自监督学习(SSL)和零样本自监督学习(ZSSSL)框架,以加速定量MRI(qMRI)的图像重建 提出了不依赖全采样数据的自监督学习和零样本自监督学习方法,并结合内存高效学习技术降低GPU内存需求 在高度加速因子条件下,SSL和ZSSSL的性能略逊于监督学习(SL) 加速定量MRI图像重建过程并降低计算资源需求 定量MRI图像重建 医学影像分析 NA 定量MRI(qMRI), 自监督学习(SSL), 零样本自监督学习(ZSSSL) 深度学习(DL) MRI图像 三个实验(2D T2映射/MSME, 3D T1映射/VFA-SPGR, 3D T2映射/DESS)
555 2025-06-06
Utility of artificial intelligence-based conversation voice analysis for detecting cognitive decline
2025, PloS one IF:2.9Q1
研究论文 本研究开发了一种基于人工智能的对话语音分析模型,用于检测认知衰退 利用短对话语音样本通过AI模型检测认知衰退,无需专业环境或设备 样本量较小(263名患者),且仅基于Mini-Mental State Examination分数进行标签 开发一种便捷的认知衰退筛查工具 认知衰退患者和认知正常人群 自然语言处理 老年疾病 机器学习 全耦合神经网络 语音 263名患者的语音样本,其中20个样本用于准确性评估
556 2025-06-06
Overlapping point cloud registration algorithm based on KNN and the channel attention mechanism
2025, PloS one IF:2.9Q1
研究论文 提出了一种基于KNN和通道注意力机制的重叠点云配准算法,显著提高了重叠区域的特征提取和匹配能力 结合KNN算法和通道注意力机制(CAM),设计了有效性评分网络,提高了配准精度和系统鲁棒性 未提及算法在实时性方面的表现 提高重叠点云区域的特征提取和匹配能力,构建高精度环境模型 三维点云数据 计算机视觉 NA KNN算法,通道注意力机制(CAM) 有效性评分网络 三维点云数据 ModelNet40数据集和Stanford数据集
557 2025-06-06
A novel spectral analysis-based grading system for gastrointestinal activity
2025, PloS one IF:2.9Q1
研究论文 本文介绍了一种基于频谱分析的新型胃肠道活动分级系统,用于客观评估胃肠动力 提出了一种创新的无监督分级系统,通过频谱特征分析肠鸣音来评估胃肠动力,避免了传统方法依赖个人判断和大规模标注数据集的问题 虽然验证了方法的可靠性,但仍需进一步研究以确认其在更广泛临床环境中的适用性 开发一种客观评估胃肠动力的方法,辅助医生量化胃肠道活动 肠鸣音(由消化气体和液体在蠕动过程中产生的声音信号) 数字病理 胃肠道疾病 频谱特征分析 无监督学习 音频 NA
558 2025-06-06
An efficient non-parametric feature calibration method for few-shot plant disease classification
2025, Frontiers in plant science IF:4.1Q1
research paper 提出一种基于特征适应评分(FAS)度量的方法,用于少样本植物病害分类 利用FAS评分与测试准确率的严格正相关关系,无需训练网络即可确定适用于少样本植物病害分类的Swin-Transformer V2-F6网络结构,并设计了PDFC算法进行特征校准 NA 解决植物病害图像数据不足的问题,提高少样本植物病害分类的准确率 植物病害图像 computer vision plant disease few-shot learning Swin-Transformer V2 image PlantVillage数据集及其他数据集
559 2025-06-06
Ventricular volume adjustment of brain regions depicts brain changes associated with HIV infection and aging better than intracranial volume adjustment
2025, Frontiers in neurology IF:2.7Q3
research paper 该研究探讨了在分析HIV感染和衰老相关的大脑结构变化时,采用侧脑室(LV)体积调整比颅内体积(ICV)调整更能揭示潜在的萎缩模式 提出了使用侧脑室体积调整作为新的分析方法,以更准确地识别HIV感染和衰老相关的大脑萎缩模式,尤其是在HIV相关神经认知障碍(HAND)的研究中 研究仅基于MRI T1图像数据,未考虑其他可能的神经影像学或临床数据 比较不同体积调整策略在识别HIV感染和衰老相关大脑萎缩模式中的效果 HIV感染者和健康对照者的大脑结构变化 digital pathology HIV感染 MRI T1成像 deep learning models image NA
560 2025-06-05
Advancements in Frank's sign Identification using deep learning on 3D brain MRI
2025-01-18, Scientific reports IF:3.8Q1
research paper 本研究开发了一种深度学习模型,用于在3D面部MRI图像中自动识别Frank's sign(FS) 首次使用深度学习技术对3D脑部MRI图像中的FS进行自动分割和识别 研究仅基于有限数量的MRI扫描样本(400例训练集+600例验证集) 开发自动化的FS检测工具以改善临床诊断 3D面部MRI图像中的Frank's sign标记 digital pathology geriatric disease MRI扫描 U-net 3D图像 400例训练集MRI扫描+600例验证集MRI扫描(两个外部数据集各300例)
回到顶部