深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202501] [清除筛选条件]
当前共找到 2559 篇文献,本页显示第 721 - 740 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
721 2025-05-28
Status and Prospects of Research on Deep Learning-based De Novo Generation of Drug Molecules
2025, Current computer-aided drug design IF:1.5Q3
综述 本文全面概述了基于深度学习的药物分子从头生成研究现状,并指出了未来发展的关键领域 深度学习为合理且稳健的药物设计提供了新思路,相比传统方法更高效 NA 探索深度学习在药物分子生成中的应用及其未来发展方向 药物分子 机器学习 NA 深度学习 GANs, RNNs, VAEs, CNNs, DMs 分子数据 NA
722 2025-05-27
Development of a model for measuring sagittal plane parameters in 10-18-year old adolescents with idiopathic scoliosis based on RTMpose deep learning technology
2025-Jan-11, Journal of orthopaedic surgery and research IF:2.8Q1
research paper 开发了一种基于RTMpose深度学习技术的模型,用于快速自动测量青少年特发性脊柱侧凸(AIS)患者的全脊柱X光片 利用RTMpose深度学习技术自动化测量过程,解决了手动测量耗时和个体间变异性的问题 不同医院数据格式和规范的变异性是一个挑战,通过数据增强技术进行了处理 开发一种深度学习模型,用于快速自动测量AIS患者的全脊柱X光片 10-18岁青少年特发性脊柱侧凸(AIS)患者 digital pathology idiopathic scoliosis RTMpose deep learning technology RTMpose X-ray images 560张全脊柱矢状面X光片,来自内蒙古五家医院
723 2025-05-27
[Deep Learning Approaches to Address the Shortage of Observers]
2025, Nihon Hoshasen Gijutsu Gakkai zasshi
研究论文 本研究开发了一种基于深度学习的AI观察者,以解决熟练人类观察者短缺的问题,并评估了用AI替代人类观察者的影响 使用VGG19和VGG16深度学习模型替代人类观察者,解决了观察者短缺问题,并验证了AI与人类观察结果的一致性 无法修改训练模型的评估标准或阶段 解决熟练人类观察者短缺问题并评估AI替代人类观察者的可行性 CT扫描图像和人类观察者 计算机视觉 NA CT扫描 VGG19, VGG16 图像 24张CT扫描图像,5名人类观察者
724 2025-05-27
Editorial: Advances in computer vision: from deep learning models to practical applications
2025, Frontiers in neuroscience IF:3.2Q2
NA NA NA NA NA NA NA NA NA NA NA NA
725 2025-05-26
Comparison of Deep Learning-Based Auto-Segmentation Results on Daily Kilovoltage, Megavoltage, and Cone Beam CT Images in Image-Guided Radiotherapy
2025 Jan-Dec, Technology in cancer research & treatment IF:2.7Q3
研究论文 本研究评估了基于深度学习的自动分割模型在不同在线CT成像模态下的自动分割结果 比较了kVCT、kV-CBCT和MVCT图像在深度学习自动分割中的性能差异 所有成像模态的自动分割后仍需人工校正,特别是对于与周围组织对比度有限的器官 评估图像引导放疗中不同CT成像模态的自动分割效果 60名患者的盆腔和胸部区域CT图像 数字病理 NA CT扫描 CNN 图像 60名患者的每日CT图像
726 2025-05-26
Classification of fashion e-commerce products using ResNet-BERT multi-modal deep learning and transfer learning optimization
2025, PloS one IF:2.9Q1
研究论文 本研究提出了一种基于多模态深度学习和迁移学习的时尚电商产品分类方法 通过多模态深度学习和迁移学习解决了电商产品分类中的三个挑战:数据偏差、多格式输入数据处理以及高计算成本 未提及具体的数据集规模或模型在不同业务环境中的泛化能力 提高时尚电商平台上产品分类的准确性,以优化搜索和产品曝光 时尚电商平台上的产品 机器学习 NA 迁移学习、多模态深度学习 ResNet-BERT 图像、文本 未提及具体样本数量
727 2025-05-26
EFCRFNet: A novel multi-scale framework for salient object detection
2025, PloS one IF:2.9Q1
research paper 提出了一种名为EFCRFNet的新型多尺度特征提取框架,用于显著目标检测 引入了两个创新模块:增强条件随机场(ECRF)和边缘特征增强模块(EFEM),以提升复杂场景下的特征融合和边界识别能力 未提及具体局限性 提升显著目标检测的准确性和特征融合效果 图像中的显著区域 computer vision NA 多尺度特征提取 EFCRFNet(包含ECRF和EFEM模块) image 标准基准数据集(未提及具体数量)
728 2025-05-26
Artificial intelligence in vaccine research and development: an umbrella review
2025, Frontiers in immunology IF:5.7Q1
综述 本文通过伞状综述总结了人工智能在疫苗研发、优化、临床试验、供应链物流和公众接受度方面的贡献 首次统一综合了AI在疫苗生命周期各环节的应用证据,并提出了五大针对性行动领域以推动从理论到实践的转化 存在数据异质性、算法偏见、有限监管框架和伦理透明度等问题 评估AI在疫苗研发全周期中的具体作用和有效性 27篇关于AI在疫苗领域应用的系统综述、范围综述、叙述性综述和荟萃分析 人工智能 COVID-19 随机森林、支持向量机、梯度提升、逻辑回归、CNN、RNN、GAN、变分自编码器 传统机器学习与深度学习架构 多组学数据、供应链数据、公众情绪数据 27篇综述文献
729 2025-05-26
Artificial intelligence-based automated breast ultrasound radiomics for breast tumor diagnosis and treatment: a narrative review
2025, Frontiers in oncology IF:3.5Q2
综述 本文综述了基于人工智能的自动乳腺超声放射组学在乳腺肿瘤诊断和治疗中的应用 整合人工智能与放射组学,通过机器学习和深度学习算法提升乳腺肿瘤诊断和治疗评估的准确性和效率 分析数据存在固有变异性,需进一步评估模型以确保其在临床应用中的可靠性 探讨自动乳腺超声放射组学在乳腺肿瘤诊断和治疗中的潜力 乳腺肿瘤患者 数字病理 乳腺癌 自动乳腺超声(ABUS)、机器学习(ML)、深度学习(DL) ML、DL 医学影像数据 NA
730 2025-05-26
Development and validation of a predictive model combining radiomics and deep learning features for spread through air spaces in stage T1 non-small cell lung cancer: a multicenter study
2025, Frontiers in oncology IF:3.5Q2
研究论文 开发并验证了一个结合放射组学和深度学习特征的预测模型,用于预测T1期非小细胞肺癌中空气传播扩散(STAS)的风险 结合了放射组学和深度学习特征,开发了一个综合模型,显著提高了STAS的预测性能 研究样本来自四个中心,可能存在选择偏差 比较不同深度学习模型和放射组学模型在预测STAS中的效果,并开发最优模型用于临床手术规划 T1期非小细胞肺癌患者 数字病理 肺癌 ResNet50算法、Lasso回归、Spearman等级相关、XGboost 2D、3D、2.5D深度学习模型,INTRA、Peri2mm、Fusion2mm放射组学模型,综合模型 图像 480名患者,分为训练队列、内部测试队列和外部验证队列
731 2025-05-26
Critical review of OCT in clinical practice for the assessment of oral lesions
2025, Frontiers in oncology IF:3.5Q2
review 本文对光学相干断层扫描(OCT)在口腔病变临床评估中的应用进行了批判性回顾 探讨了OCT在口腔肿瘤学中的潜力,包括早期检测、监测和高风险人群的经济有效筛查,以及AI辅助解释OCT图像的进展 OCT设备的高成本限制了其可及性和广泛应用,且数据解释方法存在显著异质性,严格依赖操作者,可能影响结果的标准化和可重复性 评估OCT在口腔鳞状细胞癌(OSCC)和口腔潜在恶性病变(OPMDs)临床实践中的应用优势和挑战 人类受试者,涉及OCT在OSCC和OPMD评估、边缘切除中的应用以及AI辅助OCT图像解释的研究 digital pathology oral cancer OCT, AI-assisted imaging machine learning, deep learning image NA
732 2025-05-26
Deep ensemble learning-driven fully automated multi-structure segmentation for precision craniomaxillofacial surgery
2025, Frontiers in bioengineering and biotechnology IF:4.3Q2
研究论文 本研究开发了一种基于深度集成学习的全自动多结构分割模型CMF-ELSeg,用于精确颅颌面手术 采用粗到细的级联架构和集成方法,结合了三种3D U-Net模型的优势,提高了分割精度 研究样本量相对较小,仅包含143例CMF CT扫描 开发高精度的颅颌面结构和牙齿分割模型,以推进计算机辅助颅颌面手术 颅颌面结构和个体牙齿 数字病理 颅颌面疾病 CT扫描 3D U-Net (V-Net, nnU-Net, 3D UX-Net) 图像 143例CMF CT扫描
733 2025-05-26
Automatic diagnosis and measurement of intracranial aneurysms using deep learning in MRA raw images
2025, Frontiers in neurology IF:2.7Q3
research paper 本研究开发了一种基于深度学习模型的自动诊断和测量颅内动脉瘤的方法,使用原始MRA图像 首次提出基于2D原始图像的深度学习模型,实现颅内动脉瘤的一键式全自动诊断和大小测量 独立验证集的召回率和灵敏度略低于训练集和内部验证集 开发自动诊断和测量颅内动脉瘤的深度学习模型,提高临床工作效率 颅内动脉瘤患者 digital pathology cardiovascular disease MRA 3DUnet image 1,014 IAs (852名患者)用于训练和验证,315名患者(179例有IA,136例无IA)用于独立验证
734 2025-05-26
Detecting eavesdropping nodes in the power Internet of Things based on Kolmogorov-Arnold networks
2025, PloS one IF:2.9Q1
研究论文 提出了一种基于Kolmogorov-Arnold网络(KANs)的创新方法,用于电力物联网中的窃听节点定位 利用KANs逼近任意非线性函数的强大能力,通过样条函数的灵活组合构建从异构节点特征到窃听位置的端到端映射 NA 探索更智能高效的异常定位方法,以应对电力物联网中的窃听攻击 电力物联网(PIoT)中的窃听节点 物联网安全 NA Kolmogorov-Arnold网络(KANs) KAN 异构节点特征 真实电网数据上的大量仿真和实验
735 2025-05-26
An intelligent framework for crop health surveillance and disease management
2025, PloS one IF:2.9Q1
research paper 提出了一种用于作物健康监测和早期病害检测的智能框架 结合深度学习、云计算、嵌入式设备和物联网技术,实现大范围农田的实时植物健康监测 未提及具体实施中的技术挑战或数据限制 提高早期病害检测准确性并推荐有效的病害管理策略 农作物健康与病害管理 农业智能化 植物病害 深度学习、云计算、物联网 CNN, MobileNet-1, MobileNet-2, ResNet-50, InceptionV3 图像、环境参数(温度、湿度、水位) NA
736 2025-05-26
Forecasting monthly runoff in a glacierized catchment: A comparison of extreme gradient boosting (XGBoost) and deep learning models
2025, PloS one IF:2.9Q1
研究论文 本研究比较了极端梯度提升(XGBoost)和深度学习模型在冰川流域月径流预测中的表现 采用了一种新颖的统计方法来评估预测模型在检测径流数据转折点方面的有效性,并发现XGBoost模型在预测精度和转折点估计上优于LSTM和随机森林模型 研究仅针对瑞士Lotschental流域,结果可能不适用于其他地理或气候条件不同的区域 提高冰川流域月径流预测的准确性,以支持水资源管理、防洪、水电和灌溉 瑞士Lotschental冰川流域的月径流数据 机器学习 NA 时间序列分析 XGBoost, LSTM, RF 时间序列数据 20年的径流数据(2002-2021年),其中70%(2002-2015年)用于训练和校准,30%(2016-2021年)用于测试
737 2025-05-25
Mask R-CNN assisted diagnosis of spinal tuberculosis
2025-Jan, Journal of X-ray science and technology IF:1.7Q3
研究论文 提出一种基于深度学习的辅助诊断方法,用于脊柱结核的诊断 改进Mask R-CNN模型,通过引入ResPath和cbam*提升性能指标 未提及具体样本量和数据来源的局限性 开发一种准确客观的脊柱结核诊断方法 脊柱结核的CT影像 计算机视觉 脊柱结核 CT成像 Mask R-CNN, Faster-RCNN, SSD 图像 NA
738 2025-05-25
Assessing Self-supervised xLSTM-UNet Architectures for Head and Neck Tumor Segmentation in MR-Guided Applications
2025, Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings
研究论文 本文提出了一种新颖的两阶段模型,用于头颈部肿瘤分割,以优化MRI引导的自适应放射治疗 采用自监督3D师生学习框架和xLSTM-based UNet模型,结合时空特征,显著提高了肿瘤分割的准确性 模型性能依赖于有限的未标注数据集,可能影响在更大规模或多样化数据上的泛化能力 优化MRI引导的自适应放射治疗(RT)在头颈部癌症(HNC)中的应用 头颈部肿瘤的MRI图像 数字病理 头颈部癌症 自监督学习,DINOv2架构 xLSTM-based UNet 3D MRI图像 多样化的HNC病例数据集
739 2025-05-24
NETest and Gastro-Entero-Pancreatic Neuroendocrine Tumors: Still Far from Routine Clinical Application? A Systematic Review
2025-Jan-27, Genes IF:2.8Q2
系统性综述 本文系统性综述了NETest在胃肠胰神经内分泌肿瘤(GEP-NETs)诊断和预后分层中的应用 NETest结合实时PCR和深度学习策略,专门识别具有神经内分泌基因型的肿瘤 NETest在某些研究中显示出低特异性,主要归因于与其他胃肠道恶性肿瘤的干扰 评估NETest在GEP-NETs诊断和预后中的临床应用价值 胃肠胰神经内分泌肿瘤(GEP-NETs) 数字病理学 胃肠胰神经内分泌肿瘤 实时PCR, 深度学习 NA 分子数据 五项研究评估诊断作用,九项研究评估预后价值
740 2025-05-24
Ultrasound-Based Deep Learning Radiomics Nomogram for Tumor and Axillary Lymph Node Status Prediction After Neoadjuvant Chemotherapy
2025-Jan, Academic radiology IF:3.8Q1
研究论文 探讨基于超声的深度学习放射组学列线图(DLRN)在预测乳腺癌患者新辅助化疗后肿瘤状态和腋窝淋巴结转移中的可行性 结合临床特征、放射组学和深度迁移学习特征,构建融合算法预测模型,并验证其在生存分析中的有效性 研究样本量较小(243例),且为回顾性研究,可能存在选择偏倚 预测乳腺癌患者新辅助化疗后肿瘤状态和腋窝淋巴结转移,并验证融合算法的临床有效性 乳腺癌患者 数字病理 乳腺癌 深度学习放射组学、Cox回归模型 DLRN(深度学习放射组学列线图) 超声图像 243例接受新辅助化疗的乳腺癌患者
回到顶部