本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61 | 2025-04-01 |
Detection of ionospheric disturbances with a sparse GNSS network in simulated near-real time Mw 7.8 and Mw 7.5 Kahramanmaraş earthquake sequence
2025, GPS solutions
IF:4.5Q1
DOI:10.1007/s10291-024-01808-2
PMID:39990601
|
研究论文 | 本文开发了一种近实时检测电离层扰动的方法,用于识别由地震引起的电离层异常信号 | 利用LSTM神经网络自动检测地震引起的电离层扰动,无需事先知晓地震事件 | 方法在夜间电离水平较低时可能无法检测到较小幅度的扰动 | 开发近实时电离层扰动检测方法,用于地震监测 | 由Kahramanmaraş地震序列引起的电离层扰动 | 地球物理监测 | NA | GNSS总电子含量(TEC)测量 | LSTM | 卫星信号数据 | 2023年2月6日Kahramanmaraş地震序列数据 |
62 | 2025-04-01 |
Deep Learning-Based Auto-Segmentation for Liver Yttrium-90 Selective Internal Radiation Therapy
2025 Jan-Dec, Technology in cancer research & treatment
IF:2.7Q3
DOI:10.1177/15330338251327081
PMID:40152005
|
研究论文 | 评估基于深度学习的自动分割方法在Y-90选择性内放射治疗(SIRT)中肝脏轮廓划分的应用 | 使用U-Net3D架构构建的深度学习模型在肝脏自动分割中表现优于传统的基于图谱的方法 | 研究仅针对SIRT患者的CT图像进行测试,未涉及其他类型的医学影像或更广泛的临床场景 | 提高Y-90选择性内放射治疗中肝脏轮廓划分的准确性和效率 | SIRT患者的CT图像中的肝脏 | 数字病理学 | 肝脏疾病 | CT成像 | U-Net3D | 医学影像 | 未明确提及样本数量,仅提到SIRT患者的CT图像 |
63 | 2025-04-01 |
A hybrid long short-term memory-convolutional neural network multi-stream deep learning model with Convolutional Block Attention Module incorporated for monkeypox detection
2025 Jan-Mar, Science progress
IF:2.6Q2
DOI:10.1177/00368504251331706
PMID:40152267
|
研究论文 | 开发了一种结合LSTM-CNN的多流深度学习模型,用于猴痘的早期检测 | 提出了一种结合LSTM、CNN和CBAM的混合模型,用于猴痘检测,并通过Grad-CAM和LIME提高模型的可解释性 | 未提及模型在更大或多样化数据集上的泛化能力 | 开发一种可靠的深度学习模型,用于猴痘的早期检测 | 猴痘皮肤病变图像 | 计算机视觉 | 猴痘 | 深度学习 | LSTM-CNN混合模型 | 图像 | MSLD v2.0数据集 |
64 | 2025-03-30 |
Correction: Detection and recognition of foreign objects in Pu-erh Sun-dried green tea using an improved YOLOv8 based on deep learning
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0321409
PMID:40153338
|
correction | 对一篇关于使用改进的YOLOv8深度学习模型检测和识别普洱茶晒青毛茶中外来物的文章进行更正 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
65 | 2025-04-01 |
TNFR-LSTM: A Deep Intelligent Model for Identification of Tumour Necroses Factor Receptor (TNFR) Activity
2025 Jan-Dec, IET systems biology
IF:1.9Q3
DOI:10.1049/syb2.70007
PMID:40156875
|
research paper | 该研究开发了一个名为DEEP-TNFR的深度学习模型,用于预测肿瘤坏死因子受体(TNFR)的活性 | 提出了一种结合相对和反向位置特征以及统计矩的先进模型,LSTM在多种深度学习分类器中表现最佳 | 未提及模型在更广泛数据集上的泛化能力或实际临床应用中的表现 | 提高TNFR活性预测的准确性,以支持炎症、癌症发展和自身免疫疾病的研究 | 肿瘤坏死因子受体(TNFR) | machine learning | cancer | 深度学习 | LSTM, Bi-LSTM, GRU, CNN, RNN, FCN | 生物序列数据 | 使用了一个公认的基准数据集,但未提及具体样本数量 |
66 | 2025-03-30 |
Advances in computer vision and deep learning-facilitated early detection of melanoma
2025-Jan-15, Briefings in functional genomics
IF:2.5Q3
DOI:10.1093/bfgp/elaf002
PMID:40139223
|
综述 | 本文综述了计算机视觉和深度学习在早期黑色素瘤检测中的最新进展 | 整合了多种先进神经网络模型(如YOLO、GAN、Mask R-CNN、ResNet和DenseNet)以提升早期黑色素瘤检测和诊断的准确性 | 未来研究需进一步提升技术、整合多模态数据并改善AI决策的可解释性以促进临床采用 | 探索计算机视觉和深度学习技术在早期黑色素瘤检测中的应用 | 黑色素瘤的早期检测和诊断 | 计算机视觉 | 黑色素瘤 | 深度学习 | YOLO, GAN, Mask R-CNN, ResNet, DenseNet | 图像 | 综合皮肤病数据集(如PH2、ISIC、DERMQUEST和MED-NODE) |
67 | 2025-03-29 |
Correction to: "UDE DIATOMS in the Wild 2024": a new image dataset of freshwater diatoms for training deep learning models
2025-Jan-06, GigaScience
IF:11.8Q1
DOI:10.1093/gigascience/giaf043
PMID:40139910
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
68 | 2025-03-30 |
Beyond the Greater Angkor Region: Automatic large-scale mapping of Angkorian-period reservoirs in satellite imagery using deep learning
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0320452
PMID:40138322
|
研究论文 | 利用深度学习技术自动识别卫星图像中的吴哥时期水库,以扩展对吴哥文化区域的研究 | 使用先进的深度学习模型Deeplab V3+进行语义分割,自动识别吴哥时期的水库,显著提高了考古学家的工作效率 | 虽然模型准确度高,但仍需考古学家的进一步验证,且目前仅针对吴哥时期水库进行识别 | 通过自动识别卫星图像中的考古特征,扩展对吴哥文化区域的全面研究 | 吴哥时期的水库 | 计算机视觉 | NA | 卫星遥感技术、深度学习 | Deeplab V3+ | 卫星图像 | NA |
69 | 2025-03-30 |
Impact of imbalanced features on large datasets
2025, Frontiers in big data
IF:2.4Q2
DOI:10.3389/fdata.2025.1455442
PMID:40151465
|
research paper | 本文探讨了基于图像特征的分类框架,分析了平衡与不平衡分布对图像分类性能的影响 | 研究了类别不平衡对大规模数据集图像分类性能的影响,并发现Distributed Gaussian (D-GA)和Distributed Poisson (D-PO)是最有效的技术 | 未提及具体的数据集大小或实验的具体细节 | 探索类别不平衡对图像分类性能的影响 | 图像和视频数据 | computer vision | NA | Distributed Gaussian (D-GA), Distributed Poisson (D-PO) | Random Forest (RF), SVM, deep learning models | image, video | large datasets(未提及具体数量) |
70 | 2025-03-30 |
Research on herd sheep facial recognition based on multi-dimensional feature information fusion technology in complex environment
2025, Frontiers in veterinary science
IF:2.6Q1
DOI:10.3389/fvets.2025.1404564
PMID:40151568
|
研究论文 | 本文提出了一种基于深度学习的智能监测系统,用于复杂环境下羊群的面部识别和健康评估 | 系统整合了多部分检测网络、面部分类模型和面部表情分析网络,并引入了多链接卷积融合块(MCFB)和可重参数化卷积(RepConv)结构以提高检测精度 | NA | 提高大规模农场中羊群个体监测的准确性和效率 | 羊群 | 计算机视觉 | NA | 深度学习 | YOLOv5s, GhostNet, EfficientNet | 图像 | NA |
71 | 2025-03-30 |
Transformer-based ensemble model for dialectal Arabic sentiment classification
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2644
PMID:40151815
|
研究论文 | 该研究提出了一种基于Transformer的集成模型,用于方言阿拉伯语的情感分类 | 提出了一种基于Transformer的集成模型,在方言阿拉伯语情感分类任务中表现优于传统机器学习和深度学习模型 | 研究仅限于三个基准数据集,可能无法涵盖所有方言阿拉伯语的变体 | 提高方言阿拉伯语情感分类的准确性和性能 | 阿拉伯语推文的情感分类 | 自然语言处理 | NA | AraVec, FastText, AraBERT, TF-IDF | Transformer-based ensemble model, SVM, NB, DT, XGBoost, CNN, BLSTM, CAMeLBERT, XLM-RoBERTa, MARBERT | 文本 | 三个基准数据集:ASTD、ASAD和TEAD |
72 | 2025-03-30 |
A semantic segmentation-based automatic pterygium assessment and grading system
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1507226
PMID:40151829
|
研究论文 | 本研究开发了一种结合深度学习和图像处理技术的自动翼状胬肉评估和分级系统 | 通过整合语义分割和曲线拟合技术,实现了翼状胬肉的自动分级,与医生临床评估高度一致 | 数据集的构建仍需在未来研究中进一步优化 | 开发自动化的翼状胬肉评估系统以优化治疗并减轻患者痛苦 | 翼状胬肉患者 | 数字病理学 | 眼部疾病 | 深度学习、图像处理 | 改进的TransUnet架构 | 图像 | 临床数据集中的裂隙灯显微镜图像 |
73 | 2025-03-29 |
TriCvT-DTI: Predicting Drug-Target Interactions Using Trimodal Representations and Convolutional Vision Transformers
2025-Jan-30, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3536476
PMID:40031370
|
研究论文 | 提出了一种名为TriCvT-DTI的新方法,通过结合分子图像、化学序列特征和药物图表示来预测药物-靶标相互作用 | 结合了分子图像、化学序列特征和药物图表示,采用双向多头注意力机制和卷积视觉变换器(CvTs)来全面捕捉药物的结构、空间和功能特征 | 未明确提及具体局限性 | 提高药物-靶标相互作用预测的准确性和效率 | 药物和靶标之间的相互作用 | 机器学习 | NA | 卷积视觉变换器(CvTs)和双向多头注意力机制 | TriCvT-DTI | 分子图像、化学序列特征、图表示 | 三个数据集:Human、C. elegans和Davis |
74 | 2025-03-29 |
Using transformer-based models and social media posts for heat stroke detection
2025-01-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84992-y
PMID:39753702
|
研究论文 | 本研究评估了基于transformer的预训练语言模型在分类与热射病相关的日语推文中的性能,并探讨了结合社交媒体和人工智能进行基于事件的公共卫生监测的潜力 | 首次将transformer-based模型应用于日语推文的热射病分类,并通过时空和动画视频可视化展示了推文与热射病紧急医疗疏散之间的相关性 | 社交媒体帖子的主观性和未经临床诊断的可靠性问题仍然存在挑战 | 评估基于transformer的预训练语言模型在热射病相关推文分类中的性能,探索社交媒体与人工智能结合的公共卫生监测潜力 | 日语推文和热射病紧急医疗疏散数据 | 自然语言处理 | 热射病 | transformer-based预训练语言模型 | transformer | 文本(社交媒体帖子) | 未明确说明样本数量 |
75 | 2025-03-29 |
Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images
2025-01-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84692-7
PMID:39753735
|
研究论文 | 本文提出了一种结合UNet分割和贝叶斯机器学习的新型可解释人工智能技术,用于MRI图像中脑肿瘤的分类 | 提出了一种新的可解释人工智能技术XAISS-BMLBT,结合了MEDU-Net+分割、ResNet50特征提取和贝叶斯正则化人工神经网络(BRANN)分类,以及改进的径向移动优化模型进行超参数调优 | 未提及具体的数据集大小和多样性,可能影响模型的泛化能力 | 提高脑肿瘤在MRI图像中的分割和分类准确率,以辅助医生进行更快速和准确的诊断 | MRI图像中的脑肿瘤 | 数字病理学 | 脑肿瘤 | MRI扫描、深度学习 | UNet、ResNet50、BRANN | 图像 | 使用了基准数据库,但未提及具体样本数量 |
76 | 2025-03-29 |
Assessment of choroidal vessels in healthy eyes using 3-dimensional vascular maps and a semi-automated deep learning approach
2025-01-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-85189-7
PMID:39753934
|
研究论文 | 使用3D深度学习方法和半自动化技术评估健康眼睛中的脉络膜血管 | 采用3D深度学习方法结合半自动化技术对脉络膜血管进行非侵入性评估,创新性地提供了脉络膜血管的三维可视化 | 研究样本量较小(80只眼睛),且为回顾性研究,可能存在选择偏差 | 评估健康眼睛中脉络膜血管的特征及其与年龄和性别的关系 | 健康眼睛的脉络膜血管 | 数字病理学 | NA | swept-source OCT, 深度学习 | ResUNet | OCT扫描图像 | 80只眼睛(来自53名患者) |
77 | 2025-03-29 |
pACP-HybDeep: predicting anticancer peptides using binary tree growth based transformer and structural feature encoding with deep-hybrid learning
2025-01-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84146-0
PMID:39747941
|
research paper | 提出了一种名为pACP-HybDeep的高可靠性模型,用于准确预测抗癌肽 | 结合了基于注意力机制的ProtBERT-BFD编码器和CTDT结构信息编码,以及基于k近邻的二叉树生长算法和CNN+RNN深度学习模型 | 未提及模型在更广泛数据集上的表现或实际临床应用中的潜在限制 | 开发一种高效可靠的抗癌肽预测工具 | 抗癌肽 | machine learning | cancer | ProtBERT-BFD编码器, CTDT结构信息编码, k近邻算法 | CNN+RNN | peptide sequences | 三个独立数据集Ind-S1, Ind-S2, Ind-S3 |
78 | 2025-03-29 |
A deep learning-based multi-view approach to automatic 3D landmarking and deformity assessment of lower limb
2025-01-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84387-z
PMID:39747979
|
研究论文 | 提出一种基于深度学习的多视角方法,用于自动3D地标检测和下肢畸形评估 | 采用多视角渲染和金字塔式卷积神经网络整合技术,自动检测CT图像中的3D地标,提高地标检测和指标评估的速度与准确性 | 未提及具体样本量及数据来源的多样性,可能影响模型的泛化能力 | 开发一种自动检测下肢CT图像中3D地标的方法,以可靠诊断骨骼疾病 | 下肢CT图像中的骨骼地标 | 计算机视觉 | 骨骼疾病 | CT扫描 | 金字塔式CNN | 3D图像 | NA |
79 | 2025-03-29 |
Non-invasive blood glucose monitoring using PPG signals with various deep learning models and implementation using TinyML
2025-01-02, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84265-8
PMID:39753714
|
研究论文 | 本研究提出了一种创新的1秒信号分割方法,并评估了三种先进深度学习模型在利用PPG信号估计血糖水平方面的性能 | 创新的1秒信号分割技术显著提高了准确性和计算效率,并在嵌入式设备上实现了即时血糖估计 | 训练数据在手术和麻醉期间收集,可能影响模型在正常状态下的泛化能力 | 开发一种非侵入性、准确且方便的血糖监测方法 | PPG信号 | 机器学习 | 糖尿病 | PPG | 深度学习模型 | 信号数据 | 手术和麻醉期间收集的训练数据及单独测试数据集 |
80 | 2025-03-29 |
Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring
2025-Jan, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.12.S1.S13005
PMID:39416764
|
研究论文 | 本文提出了一种基于深度学习的自动化评分方法,用于评估数字乳腺X线摄影(DM)和数字乳腺断层合成(DBT)系统的任务性能 | 使用具有随机羟基磷灰石微钙化的逼真乳腺体模和基于Resnet-18架构的半自动化深度学习图像评分方法,解决了现有体模方法背景不真实、评分主观和信号模式不具代表性的问题 | 研究仅基于体模实验,未涉及真实临床数据 | 开发一种客观的任务型图像质量评估方法,用于乳腺X线摄影和断层合成系统 | 数字乳腺X线摄影(DM)和数字乳腺断层合成(DBT)系统 | 数字病理学 | 乳腺癌 | 深度学习和ROC分析 | Resnet-18 | 图像 | 实验使用临床乳腺X线摄影系统收集的2D和伪3D乳腺X线照片 |