深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202501] [清除筛选条件]
当前共找到 2580 篇文献,本页显示第 801 - 820 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
801 2025-05-19
An efficient leukemia prediction method using machine learning and deep learning with selected features
2025, PloS one IF:2.9Q1
research paper 该论文提出了一种利用机器学习和深度学习技术结合特征选择的白血病预测方法 使用特征选择和深度学习技术对白血病基因数据进行分类,其中LSTM模型达到了100%的分类准确率 研究样本量较小(仅64个样本),且仅使用了CuMiDa数据库中的GSE9476数据集 开发一种高效的白血病早期预测和分类方法 白血病基因数据(来自CuMiDa数据库的GSE9476数据集) machine learning leukemia 基因微阵列技术 Random Forest, Linear Regression, SVM, LSTM gene expression data 64个样本(来自22283个基因中的5类白血病基因)
802 2025-05-18
Time Scale Network: An Efficient Shallow Neural Network For Time Series Data in Biomedical Applications
2025-Jan, IEEE journal of selected topics in signal processing IF:8.7Q1
研究论文 本文提出了一种高效的时间尺度网络(Time Scale Network),用于处理生物医学应用中的时间序列数据 结合离散小波变换的平移和膨胀序列与传统卷积神经网络及反向传播,显著减少参数和操作数量,同时学习多时间尺度的特征 未明确提及具体限制,但可能受限于信号类型的普适性验证 开发一种计算效率高、参数少且易于解释的时间序列分类网络 生物医学时间序列数据(如ECG和EEG信号) 机器学习 心血管疾病(心房功能障碍)和神经系统疾病(癫痫) 离散小波变换与CNN结合 Time Scale Network(基于CNN的改进模型) 时间序列数据(ECG和EEG信号) 未明确提及具体样本量
803 2025-05-18
Apple varieties, diseases, and distinguishing between fresh and rotten through deep learning approaches
2025, PloS one IF:2.9Q1
研究论文 本文通过深度学习方法区分苹果品种、新鲜与腐烂状态以及疾病,并提出了新的数据集和优化模型 提出了三个新的数据集(AFVC、AFQC、ADEC)和一个优化的苹果园模型(OAOM),使用新的损失函数MFCE提高模型效率 未提及模型在不同环境或光照条件下的泛化能力 提高苹果品种识别、新鲜度判断和疾病检测的自动化系统性能 苹果的品种、新鲜与腐烂状态以及疾病 计算机视觉 NA 深度学习 OAOM(优化的苹果园模型) 图像 AFVC包含29,750张图像(85类),AFQC包含2,320张图像,ADEC包含2,976张图像(7类)
804 2025-05-18
Comprehensive analysis of SQOR involvement in ferroptosis resistance of pancreatic ductal adenocarcinoma in hypoxic environments
2025, Frontiers in immunology IF:5.7Q1
research paper 本研究通过构建深度学习模型评估胰腺导管腺癌(PDAC)的缺氧特征,并探讨硫化物醌氧化还原酶(SQOR)在缺氧介导的铁死亡抵抗中的作用 建立了基于全切片图像(WSIs)的PDAC缺氧检测模型,揭示了SQOR在缺氧环境下通过增强铁死亡抵抗促进PDAC恶性进展的新机制 研究主要基于体外缺氧细胞模型和裸鼠异种移植模型,临床样本验证仍需进一步开展 探究PDAC缺氧特征与SQOR介导的铁死亡抵抗机制,为靶向治疗提供依据 胰腺导管腺癌(PDAC)组织、体外缺氧细胞模型及裸鼠异种移植模型 digital pathology pancreatic cancer multi-omics数据分析、全切片图像(WSIs)深度学习建模 深度学习模型(未明确具体架构) 病理图像、多组学数据 未明确样本数量,涉及PDAC组织、体外细胞模型及裸鼠模型
805 2025-05-18
Deep learning techniques for detecting freezing of gait episodes in Parkinson's disease using wearable sensors
2025, Frontiers in physiology IF:3.2Q2
研究论文 本文提出了一种新颖的混合深度学习框架,用于通过可穿戴传感器检测帕金森病患者的步态冻结(FoG)发作 结合CNN进行空间特征提取、BiLSTM网络进行时间建模以及注意力机制增强可解释性,并关注关键步态特征 NA 检测帕金森病患者的步态冻结(FoG)发作,以改善临床监测和患者预后 帕金森病患者 机器学习 帕金森病 深度学习 CNN, BiLSTM, 注意力机制 传感器数据 多模态数据集(包括tDCS FOG、DeFOG、Daily Living和Hantao's Multimodal)
806 2025-05-18
Providing a Prostate Cancer Detection and Prevention Method With Developed Deep Learning Approach
2025, Prostate cancer IF:2.3Q3
研究论文 提出了一种基于深度学习的前列腺癌检测和预防方法,利用组织病理学图像进行诊断 开发了一种基于流形模型的深度学习方法,结合Tile和Grad-CAM特性,提高了前列腺癌诊断的准确性 研究仅基于一个治疗中心的组织病理学图像,样本来源有限 开发前列腺癌的诊断和预防方法 前列腺癌患者 数字病理学 前列腺癌 深度学习 基于流形模型的深度学习 图像 来自一个治疗中心的组织病理学图像
807 2025-05-18
Neurovision: A deep learning driven web application for brain tumour detection using weight-aware decision approach
2025 Jan-Dec, Digital health IF:2.9Q2
research paper 开发了一个基于深度学习的框架,用于从医学共振图像中分类潜在的脑肿瘤,并通过权重感知决策方法提高分类准确性 提出了一种新颖的权重感知决策机制,有效处理多类分类中的平局情况,优于传统的基于多数的方法 未提及具体的数据集来源和样本多样性,可能影响模型的泛化能力 提高脑肿瘤的自动检测和分类准确性 脑肿瘤的医学共振图像 digital pathology brain tumour deep learning DenseNet169, VGG-19, Xception, EfficientNetV2B2 image 三个不同的数据集,具体样本数量未提及
808 2025-05-18
The application of ultrasound artificial intelligence in the diagnosis of endometrial diseases: Current practice and future development
2025 Jan-Dec, Digital health IF:2.9Q2
综述 本文回顾了人工智能在子宫内膜疾病超声图像分析中的进展,重点关注其在诊断、决策支持和预后分析中的应用 介绍了人工智能如何通过机器学习和深度学习从超声数据中提取有价值的信息,提升超声诊断能力 总结了当前研究的挑战,但未提及具体的技术或数据限制 推进超声人工智能技术在子宫内膜疾病诊断中的应用,通过数字工具改善女性健康 子宫内膜疾病的超声图像 数字病理学 子宫内膜疾病 机器学习和深度学习 NA 超声图像 NA
809 2025-05-18
YOLOv8 framework for COVID-19 and pneumonia detection using synthetic image augmentation
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 本研究开发了一个结合合成图像增强和深度学习模型的框架,用于COVID-19和肺炎的早期准确检测 整合了合成图像增强、YOLOv8模型和可解释AI技术(XAI),提高了诊断准确性和模型的可信度 未来研究需要进一步优化性能,开发临床可行的诊断工作流程 提高COVID-19和肺炎的医学影像检测准确性和可信度 COVID-19和肺炎的医学影像数据 计算机视觉 COVID-19和肺炎 合成图像增强、深度学习、可解释AI(XAI) YOLOv8、InceptionV3、DenseNet、ResNet 医学影像 未明确提及具体样本数量
810 2025-05-17
Model interpretability on private-safe oriented student dropout prediction
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种改进的预处理核诱导点数据蒸馏技术(PP-KIPDD),用于重构模拟学生信息分布的新样本,以防止学生隐私信息泄露,并通过SHAP值增强模型的可解释性 首次引入PP-KIPDD技术重构模拟学生信息分布的新样本,防止隐私泄露,并通过SHAP值增强模型的可解释性 未提及具体的数据集规模或实验验证的局限性 解决学生辍学预测中的隐私泄露和模型可解释性问题 学生辍学预测 机器学习 NA PP-KIPDD, SHAP NA 表格数据 NA
811 2025-05-17
An updated compendium and reevaluation of the evidence for nuclear transcription factor occupancy over the mitochondrial genome
2025, PloS one IF:2.9Q1
研究论文 本文通过分析扩展后的ENCODE数据集和深度学习模型,全面评估了核转录因子与线粒体基因组的关联 利用扩展的ENCODE数据集和深度学习模型,首次全面评估了核转录因子与线粒体基因组的关联,并识别出50个可能与线粒体功能相关的核转录因子 研究发现,相同的转录因子在不同抗体和ChIP实验中的结果不一致,表明实验方法可能影响结果的可靠性 评估核转录因子与线粒体基因组的关联,并探讨其在线粒体功能中的潜在作用 人类和小鼠的核转录因子及其与线粒体基因组的关联 基因组学 NA ChIP-seq, 深度学习模型 深度学习 基因组数据 6,153个ChIP实验,涉及942种蛋白质(其中763种为序列特异性转录因子)
812 2025-05-17
An Early Thyroid Screening Model Based on Transformer and Secondary Transfer Learning for Chest and Thyroid CT Images
2025 Jan-Dec, Technology in cancer research & treatment IF:2.7Q3
研究论文 提出了一种基于Transformer和二次迁移学习的早期甲状腺筛查模型,用于胸部和甲状腺CT图像 结合Transformer DNN和迁移学习技术,整合时间序列数据,解决小样本量和高噪声问题 数据集有限,样本量较小,噪声较高 提高甲状腺癌早期筛查的准确性和效率 240名来自中国广东和新疆的患者的增强CT扫描图像数据 数字病理学 甲状腺癌 增强CT扫描 Transformer DNN CT图像 240名患者
813 2025-05-17
Integration of histopathological images and immunological analysis to predict M2 macrophage infiltration and prognosis in patients with serous ovarian cancer
2025, Frontiers in immunology IF:5.7Q1
研究论文 该研究通过整合组织病理学图像和免疫学分析,预测浆液性卵巢癌患者中M2巨噬细胞浸润及其对预后的影响 利用深度多实例学习(MIL)和ResNet18网络从组织病理学图像中预测M2巨噬细胞浸润,为浆液性卵巢癌的预后评估提供了新方法 样本量相对较小,且外部验证集的数据来源未详细说明 提高浆液性卵巢癌患者的预后准确性,识别新的治疗靶点,推进个性化治疗策略 浆液性卵巢癌患者 数字病理学 卵巢癌 深度多实例学习(MIL) ResNet18 图像 86例来自TCGA的患者和106例来自组织微阵列的患者
814 2025-05-17
Analysis of Deep Learning Techniques for Vehicle Detection and Reidentification Using Data from Multiple Drones and Public Datasets
2025, Anais da Academia Brasileira de Ciencias IF:1.1Q3
research paper 本文提出了一种结合多种CNN技术的车辆检测与重识别解决方案,应用于无人机群监控的动态环境 整合了VGG16、VGG19、ResNet50、InceptionV3和EfficientNetV2L等多种CNN技术,并采用YOLOv4进行检测、DeepSORT进行跟踪,以适应不同无人机拍摄角度和条件下的图像多样性 在第一个实验中,最佳网络ResNet50的平均准确率仅为55%,表明在部分场景下性能仍有提升空间 开发适用于无人机群监控环境下车辆检测与重识别的高精度方法 高速公路等动态环境中的车辆 computer vision NA CNN, YOLOv4, DeepSORT VGG16, VGG19, ResNet50, InceptionV3, EfficientNetV2L image 两个数据集:一个来自Mendeley的公共数据集,另一个由无人机群采集的图像和数据组成
815 2025-05-17
Enlightened prognosis: Hepatitis prediction with an explainable machine learning approach
2025, PloS one IF:2.9Q1
research paper 该研究探讨了使用传统机器学习模型预测肝炎感染的有效性,并特别关注了支持向量机(SVM)的卓越表现 采用多种机器学习模型进行肝炎预测,并通过超参数调优和集成建模技术提升模型性能,同时利用解释性分析增强模型的可解释性 研究中未提及模型在更大规模或多样化数据集上的泛化能力 提高肝炎预测的准确性和及时性,以改善患者管理 肝炎感染患者的数据 machine learning hepatitis GridSearchCV, 5-fold cross-validation SVM, logistic regression, decision trees, random forest, MLP structured data NA
816 2025-05-17
Advanced molecular modeling of proteins: Methods, breakthroughs, and future prospects
2025, Advances in pharmacology (San Diego, Calif.)
review 本文综述了蛋白质分子建模的先进方法、突破性进展及未来展望 介绍了深度学习算法如AlphaFold在复杂蛋白质结构预测精度上的显著提升 未提及具体研究案例或数据验证这些方法的实际效果 增强对蛋白质功能的理解,提高药物发现的精确性 蛋白质分子及其行为预测 计算生物学 NA 同源建模、分子动力学模拟、量子力学/分子力学策略、深度学习 AlphaFold 蛋白质结构数据 NA
817 2025-05-17
Deep learning: A game changer in drug design and development
2025, Advances in pharmacology (San Diego, Calif.)
research paper 本文探讨了深度学习在药物设计和开发中的革命性作用 深度学习通过分析大量生物数据,加速药物发现过程,包括靶点识别、先导化合物选择、毒性预测、药物再利用和从头药物设计 NA 研究深度学习如何改变药物设计和开发过程 药物发现和开发过程 machine learning NA deep learning NA biological data NA
818 2025-05-17
[Comparison of the Impact of Deep Learning Techniques on Low-noise Head CT Images]
2025, Nihon Hoshasen Gijutsu Gakkai zasshi
研究论文 比较两种深度学习技术在低噪声头部CT图像上对脑CT值、图像噪声内容及白质与灰质对比噪声比的影响 比较了两种深度学习技术(AiCE和PixelShine)在低噪声头部CT图像上的效果,揭示了它们在减少图像噪声、改变CT值及影响白质与灰质对比噪声比方面的差异 研究样本量较小(21名正常患者),且仅针对无异常发现的正常患者,可能限制了结果的广泛适用性 比较深度学习技术对低噪声头部CT图像质量的影响 低噪声头部CT图像 医学影像处理 NA 深度学习技术(AiCE和PixelShine) 深度学习 CT图像 21名无异常发现的正常患者
819 2025-05-17
Developing predictive models for µ opioid receptor binding using machine learning and deep learning techniques
2025, Experimental biology and medicine (Maywood, N.J.)
研究论文 本研究旨在开发机器学习和深度学习模型,用于预测化学物质与µ阿片受体(MOR)的结合活性 结合机器学习和深度学习技术,开发了多种预测模型,用于识别MOR结合剂,可能有助于开发非成瘾性或低成瘾性药物 模型的马修斯相关系数在0.528-0.654和0.408之间,仍有提升空间 预测化学物质与µ阿片受体的结合活性,以辅助开发非成瘾性或低成瘾性阿片类镇痛药 化学物质及其与µ阿片受体的结合活性数据 机器学习 NA 分子描述符计算 随机森林、k近邻、支持向量机、多层感知机、LSTM 分子描述符数据 从公共数据库和文献中收集的化学物质数据
820 2025-05-17
Using deep learning artificial intelligence for sex identification and taxonomy of sand fly species
2025, PloS one IF:2.9Q1
research paper 开发了一种基于深度学习的AI系统,用于自动识别沙蝇的性别和分类三种不同物种 首次将深度学习技术应用于沙蝇的性别识别和物种分类,实现了超过95%的分类准确率 研究仅针对三种沙蝇物种,可能无法推广到其他物种 开发自动化工具以提高沙蝇分类和性别识别的准确性和效率 沙蝇(Phlebotomus alexandri, Phlebotomus papatasi, Phlebotomus sergenti) computer vision leishmaniasis 深度学习 CNN image 两年内本地采集和制备的沙蝇样本
回到顶部