本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
821 | 2025-03-19 |
AI-powered topic modeling: comparing LDA and BERTopic in analyzing opioid-related cardiovascular risks in women
2025, Experimental biology and medicine (Maywood, N.J.)
DOI:10.3389/ebm.2025.10389
PMID:40093658
|
研究论文 | 本文比较了LDA和BERTopic两种主题建模技术在分析女性阿片类药物相关心血管风险中的应用 | 整合AI模块到LDA和BERTopic中,并首次在阿片类药物相关心血管风险分析中进行了全面比较 | LDA的解释需要手动进行,且需要特殊的数据预处理和停用词排除程序 | 比较LDA和BERTopic在分析女性阿片类药物相关心血管风险中的表现 | 女性阿片类药物相关心血管风险 | 自然语言处理 | 心血管疾病 | 主题建模 | LDA, BERTopic | 文本 | 1,837篇PubMed摘要 |
822 | 2025-03-19 |
A two-step concept-based approach for enhanced interpretability and trust in skin lesion diagnosis
2025, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2025.02.013
PMID:40093651
|
研究论文 | 本文提出了一种新颖的两步概念驱动方法,旨在提高皮肤病变诊断的可解释性和信任度 | 通过模拟概念瓶颈模型的两个阶段,利用预训练的视觉语言模型自动预测临床概念,并使用现成的大型语言模型基于预测概念生成疾病诊断,支持测试时的人工干预以修正预测概念,从而提高最终诊断的准确性和决策透明度 | 需要少量标注示例,且未提及在大规模数据集上的验证 | 提高深度学习系统在临床环境中的可解释性和信任度 | 皮肤病变诊断 | 计算机视觉 | 皮肤病变 | 概念瓶颈模型(CBM)、视觉语言模型(VLM)、大型语言模型(LLM) | CBM、VLM、LLM | 图像 | 三个皮肤病变数据集 |
823 | 2025-03-19 |
The global research of artificial intelligence on inflammatory bowel disease: A bibliometric analysis
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251326217
PMID:40093709
|
研究论文 | 本文通过文献计量学分析评估了人工智能(AI)在炎症性肠病(IBD)中的相关研究,识别了研究基础、当前热点和未来发展方向 | 首次通过文献计量学分析总结了AI在IBD中的应用现状,并可视化揭示了发展趋势和未来研究热点 | AI在IBD中的应用仍处于初期阶段,研究深度和广度有待进一步扩展 | 评估AI在IBD中的研究现状,识别研究基础和未来发展方向 | 炎症性肠病(IBD) | 机器学习 | 炎症性肠病 | 文献计量学分析 | 深度学习模型 | 文献数据 | 176篇AI相关论文,涉及1919位作者、790个研究机构、184种期刊和49个国家/地区 |
824 | 2025-03-19 |
Data transformation of unstructured electroencephalography reports by natural language processing: improving data usability for large-scale epilepsy studies
2025, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2025.1521001
PMID:40093737
|
研究论文 | 本研究介绍了一种利用自然语言处理技术将癫痫患儿的非结构化脑电图报告转化为结构化数据的层次算法 | 开发了一种结合深度学习和基于规则的关键词提取的分层算法,用于将非结构化脑电图报告转化为结构化数据,提高了数据可用性 | 研究主要针对儿科癫痫患者,可能不适用于其他类型的患者或疾病 | 提高脑电图报告的数据可用性,以支持大规模癫痫研究 | 儿科癫痫患者的脑电图报告 | 自然语言处理 | 癫痫 | 自然语言处理(NLP) | 深度学习 | 文本 | 17,172份脑电图报告,来自3,423名儿科患者,其中6,173份正常和6,173份异常报告用于算法开发 |
825 | 2025-03-19 |
Artificial intelligence-enhanced retinal imaging as a biomarker for systemic diseases
2025, Theranostics
IF:12.4Q1
DOI:10.7150/thno.100786
PMID:40093903
|
综述 | 本文综述了人工智能增强的视网膜成像作为系统性疾病的生物标志物的研究进展 | 利用人工智能技术,特别是深度学习,增强视网膜成像在预测多种系统性疾病中的潜力 | 数据和技术的挑战与限制,包括自然语言处理框架和大语言模型的应用带来的机遇与担忧 | 探讨人工智能增强的视网膜成像在系统性疾病的筛查、早期检测、预测、风险分层和个性化预后中的潜力 | 视网膜图像 | 数字病理学 | 心血管疾病, 中枢神经系统疾病, 慢性肾病, 代谢疾病, 内分泌疾病, 肝胆疾病 | 深度学习, 自然语言处理, 大语言模型 | NA | 图像 | NA |
826 | 2025-03-19 |
ViE-Take: A Vision-Driven Multi-Modal Dataset for Exploring the Emotional Landscape in Takeover Safety of Autonomous Driving
2025, Research (Washington, D.C.)
DOI:10.34133/research.0603
PMID:40093973
|
研究论文 | 本文介绍了ViE-Take,一个用于探索自动驾驶接管安全中情感影响的多模态数据集 | ViE-Take是首个以视觉驱动的方式探索自动驾驶接管中情感影响的数据集,具有多源情感激发、多模态驾驶员数据收集和多维情感注释三个关键属性 | 数据集的应用范围和深度仍需进一步验证和扩展 | 探索情感对驾驶员接管表现的影响,并开发相关预测模型 | 自动驾驶中的驾驶员接管表现 | 计算机视觉 | NA | 深度学习 | CNN, LSTM, GAN等 | 图像、视频 | 未明确提及具体样本数量 |
827 | 2025-03-18 |
Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts
2025-Jan-20, ArXiv
PMID:39148932
|
研究论文 | 本文提出了一种自动评估不完全海马反转(IHI)的方法,通过预测四个解剖学标准并汇总形成IHI评分,进行了广泛的机器学习方法和训练策略的实验研究 | 首次提出自动评估IHI的方法,并展示了深度学习模型在多个队列中的泛化能力 | 研究基于特定队列,可能缺乏对其他人群的普适性 | 开发自动评估不完全海马反转(IHI)的方法,以理解其与神经和精神疾病的潜在关系 | 不完全海马反转(IHI) | 数字病理 | 癫痫, 精神分裂症 | 深度学习 | conv5-FC3, ResNet, SECNN, 岭回归 | T1加权MR图像 | IMAGEN研究的2,008名参与者,QTIM研究的993名参与者,QTAB研究的403名参与者,以及UKBiobank的985名受试者 |
828 | 2025-03-17 |
An optimized lightweight real-time detection network model for IoT embedded devices
2025-Jan-30, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-88439-w
PMID:39885208
|
研究论文 | 本文提出并部署了一种适用于物联网嵌入式设备的优化轻量级实时检测网络模型FRYOLO,用于解决YOLOv8在资源受限设备上部署的挑战 | 提出了一种针对物联网嵌入式设备优化的轻量级实时检测网络模型FRYOLO,解决了YOLOv8在资源受限设备上部署的难题 | 未提及模型在其他类型目标检测任务中的表现,仅以水果检测为例进行了验证 | 开发一种适用于物联网嵌入式设备的轻量级实时检测网络模型 | 物联网嵌入式设备中的实时目标检测任务 | 计算机视觉 | NA | 深度学习 | YOLOv8, FRYOLO | 图像 | 未明确提及具体样本数量,仅以水果检测为例 |
829 | 2025-03-17 |
Multi-atlas multi-modality morphometry analysis of the South Texas Alzheimer's Disease Research Center postmortem repository
2025, NeuroImage. Clinical
DOI:10.1016/j.nicl.2025.103752
PMID:39987858
|
研究论文 | 本文介绍了对南德克萨斯阿尔茨海默病研究中心尸检库进行的多图谱多模态形态学分析,旨在研究共病性痴呆 | 开发了新的处理流程,利用可用的MRI序列,解决了尸检神经影像中的多个挑战,如从固定液中分离脑组织、更新脑图谱以及脑固定引起的组织对比变化 | 区域脑体积在尸检扫描中难以测量,尽管可以获得反映性别差异和年龄趋势的稳健估计 | 研究共病性痴呆的神经病理学和神经影像学特征 | 南德克萨斯阿尔茨海默病研究中心尸检库中的脑捐赠和MRI扫描数据 | 数字病理学 | 阿尔茨海默病 | MRI | 深度学习网络 | MRI图像 | 200个脑捐赠和100个MRI扫描 |
830 | 2025-03-16 |
A deep learning method for predicting interactions for intrinsically disordered regions of proteins
2025-Jan-22, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.19.629373
PMID:39763873
|
研究论文 | 本文介绍了一种名为Disobind的深度学习方法,用于预测蛋白质内在无序区域(IDRs)与伴侣蛋白之间的相互作用 | Disobind方法在预测IDR结合位点时考虑了结合伴侣的上下文,并且不依赖于结构和多序列比对,显著优于现有的AlphaFold-multimer和AlphaFold3方法 | 尽管Disobind在预测IDR结合位点方面表现出色,但其性能仍需在更多实验数据上进一步验证 | 开发一种深度学习方法,用于预测蛋白质内在无序区域(IDRs)与伴侣蛋白之间的相互作用 | 蛋白质内在无序区域(IDRs)及其伴侣蛋白 | 机器学习 | NA | 深度学习 | NA | 蛋白质序列 | NA |
831 | 2025-03-16 |
Deep Learning-Assisted Label-Free Parallel Cell Sorting with Digital Microfluidics
2025-Jan, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202408353
PMID:39497614
|
研究论文 | 本文介绍了一种新型的无标记细胞分选方法,结合深度学习图像识别和微流体操作,基于细胞形态进行分选 | 该方法首次将YOLOv8目标检测模型与Safe Interval Path Planning算法结合,用于数字微流控平台上的细胞分选,实现了高精度和高纯度的分选效果 | 实验样本仅限于HeLa细胞、聚苯乙烯微球、红细胞、Jurkat细胞和HL-60细胞,未涉及更广泛的细胞类型 | 开发一种高效、无标记的细胞分选技术,以推动细胞生物学的基础研究和临床应用 | HeLa细胞、聚苯乙烯微球、红细胞、Jurkat细胞和HL-60细胞 | 数字病理学 | NA | 数字微流控技术(AM-DMF) | YOLOv8 | 图像 | HeLa细胞、聚苯乙烯微球、红细胞、Jurkat细胞和HL-60细胞 |
832 | 2025-03-15 |
Fewer medullary pyramids in the living kidney donor are associated with graft failure in the recipient
2025-Jan-30, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
IF:8.9Q1
DOI:10.1016/j.ajt.2025.01.041
PMID:39892790
|
研究论文 | 本研究旨在通过计算机断层扫描(CT)和组织学分析,识别与活体肾移植受者死亡审查移植物失败相关的肾实质结构特征 | 首次发现肾髓质金字塔数量与移植失败率之间的关联,并提出肾髓质金字塔计数作为移植前预后生物标志物的潜在用途 | 研究仅针对ABO兼容的活体肾移植受者,未涵盖其他类型的肾移植 | 识别与活体肾移植受者移植物失败相关的肾实质结构特征 | 2000-2020年间接受ABO兼容活体肾移植的受者 | 数字病理学 | 肾移植 | 计算机断层扫描(CT)、深度学习模型、形态计量组织学分析 | 深度学习模型 | CT图像、组织学数据 | 3098名肾移植受者,中位随访5年,346例移植物失败事件 |
833 | 2025-03-15 |
CT-based radiomics-deep learning model predicts occult lymph node metastasis in early-stage lung adenocarcinoma patients: A multicenter study
2025-Jan-30, Chinese journal of cancer research = Chung-kuo yen cheng yen chiu
|
研究论文 | 本研究开发并验证了一种基于CT的放射组学和深度学习融合模型,用于预测早期肺腺癌患者的隐匿性淋巴结转移 | 结合了放射组学和深度学习技术,使用3D SE-ResNet34网络构建融合模型,显著提高了预测隐匿性淋巴结转移的准确性 | 研究为回顾性分析,可能存在选择偏倚;样本量相对较小,需要更大规模的多中心研究进一步验证 | 开发并验证一种非侵入性预测模型,用于早期肺腺癌患者的隐匿性淋巴结转移 | 早期肺腺癌患者 | 数字病理 | 肺癌 | CT成像,深度学习 | 3D SE-ResNet34 | CT图像 | 358名患者(训练队列186名,内部验证队列48名,外部测试队列124名) |
834 | 2025-03-15 |
Deep learning-based multi-task prediction of response to neoadjuvant chemotherapy using multiscale whole slide images in breast cancer: A multicenter study
2025-Jan-30, Chinese journal of cancer research = Chung-kuo yen cheng yen chiu
|
研究论文 | 本研究开发了一种基于多尺度全切片图像(WSIs)的多任务深度学习模型(DLMM),用于预测乳腺癌患者对新辅助化疗(NAC)的反应 | 通过多尺度特征表示的串联融合和基于门控的注意力机制,模型能够精细预测治疗反应和病理完全缓解(pCR) | 尽管在多个测试集中表现出色,但模型仍需进一步验证其在不同临床环境中的普适性 | 开发一种深度学习模型,以更精确地预测乳腺癌患者对新辅助化疗的反应 | 乳腺癌患者 | 数字病理学 | 乳腺癌 | 深度学习 | 多任务深度学习模型(DLMM) | 图像 | 1,670张全切片图像,包括训练集、验证集、内部测试集、外部测试集和前瞻性测试集 |
835 | 2025-03-15 |
An analysis of performance bottlenecks in MRI preprocessing
2025-Jan-06, GigaScience
IF:11.8Q1
DOI:10.1093/gigascience/giae098
PMID:40072903
|
研究论文 | 本文分析了MRI预处理中的性能瓶颈,旨在提高其计算效率 | 使用Intel VTune分析工具对多个常用MRI预处理流程的性能瓶颈进行了详细分析,并发现了影响性能的关键因素 | 研究依赖于特定硬件和软件工具,可能不适用于所有研究环境 | 提高MRI预处理流程的计算效率,以支持大规模队列研究和临床应用 | MRI预处理流程的性能瓶颈 | 医学影像处理 | NA | Intel VTune分析工具 | NA | MRI数据 | 多个常用MRI预处理流程(ANTs、FMRIB Software Library、FreeSurfer) |
836 | 2025-03-15 |
LLM-FMS: A fine-grained dataset for functional movement screen action quality assessment
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0313707
PMID:40067873
|
研究论文 | 本文介绍了一个细粒度的功能运动筛查(FMS)数据集LLM-FMS,并提出了一个基于大语言模型(LLMs)的动作质量评估框架,以提高FMS评估的可解释性 | LLM-FMS是首个用于动作评估任务的细粒度健身动作数据集,结合了专家规则和RTMPose提取的关键骨骼级动作特征,通过LLM推断分数并提供详细解释 | 当前自动化的FMS评估仅限于等级评分,缺乏细粒度的反馈建议和可解释性 | 开发一个细粒度的FMS数据集和动作质量评估框架,以提高FMS评估的准确性和可解释性 | 45名受试者的1812个动作关键帧图像,涵盖7个FMS动作的15个动作表现 | 计算机视觉 | NA | RTMPose | LLM | 视频、图像 | 45名受试者的1812个动作关键帧图像 |
837 | 2025-03-15 |
AI models for the identification of prognostic and predictive biomarkers in lung cancer: a systematic review and meta-analysis
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1424647
PMID:40078179
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析评估了人工智能模型在识别肺癌预后和预测生物标志物方面的有效性 | 本文首次系统地评估了AI模型在肺癌生物标志物识别中的应用,涵盖了多种AI方法和生物标志物目标 | 需要进一步的大规模前瞻性研究来验证和优化AI驱动生物标志物的临床效用 | 评估人工智能模型在识别肺癌预后和预测生物标志物方面的有效性 | 肺癌患者及其生物标志物 | 机器学习 | 肺癌 | 深度学习与机器学习算法 | NA | NA | 34项研究 |
838 | 2025-03-15 |
A 5G network based conceptual framework for real-time malaria parasite detection from thick and thin blood smear slides using modified YOLOv5 model
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251321540
PMID:40078448
|
研究论文 | 本文提出了一种基于5G网络的实时疟疾寄生虫检测框架,使用改进的YOLOv5模型从厚薄血涂片中进行检测 | 通过引入两个SENet层改进YOLOv5x网络架构,优化了模型在5G网络上的实时检测性能 | 未提及模型在低资源环境下的实际部署效果和成本效益分析 | 开发一种实时疟疾检测系统,特别是在诊断资源有限的地区 | 厚薄血涂片中的疟疾寄生虫 | 数字病理学 | 疟疾 | 深度学习 | 改进的YOLOv5x模型 | 图像 | 未提及具体样本数量 |
839 | 2025-03-15 |
A spatial and temporal transformer-based EEG emotion recognition in VR environment
2025, Frontiers in human neuroscience
IF:2.4Q2
DOI:10.3389/fnhum.2025.1517273
PMID:40078487
|
研究论文 | 本文提出了一种基于Transformer的EEG情感识别方法EmoSTT,用于VR环境中的情感识别 | 首次在VR环境中使用纯Transformer方法进行EEG情感识别,并通过两个独立的Transformer模块全面建模EEG信号的时空信息 | 研究主要依赖于实验室环境和VR环境下的数据集,尚未在更广泛的真实场景中进行验证 | 提高EEG情感识别在真实场景中的生态效度,探索VR环境下的情感识别方法 | 参与者在观看VR视频时的EEG数据 | 脑机接口 | NA | EEG信号处理 | Transformer | EEG信号 | 未明确提及具体样本数量 |
840 | 2025-03-15 |
Artificial intelligence integration in surgery through hand and instrument tracking: a systematic literature review
2025, Frontiers in surgery
IF:1.6Q2
DOI:10.3389/fsurg.2025.1528362
PMID:40078701
|
系统文献综述 | 本文通过系统文献综述探讨了人工智能(AI)在手术实践中通过手和器械追踪的应用,分析了AI与手术交叉领域的最新进展和当前文献 | 本文首次系统性地总结了AI在手术手和器械追踪中的应用,并分析了不同AI算法在手术实践中的具体应用 | 当前AI技术在手术中的应用仍存在技术和社会限制,未来研究需要填补这些空白 | 探讨AI在手术手和器械追踪中的应用,以优化手术技能培训并改善手术结果 | 手术实践中的手和器械追踪 | 计算机视觉 | NA | 深度学习算法、传统机器学习算法 | 深度学习模型 | 预录视频、摄像头数据、图像数据集 | 77篇符合纳入标准的文章 |