深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202501] [清除筛选条件]
当前共找到 2889 篇文献,本页显示第 861 - 880 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
861 2025-01-24
From pixels to patients: the evolution and future of deep learning in cancer diagnostics: (Trends in Molecular Medicine, published online December 11, 2024)
2025-Jan-21, Trends in molecular medicine IF:12.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
862 2025-06-14
Combining Biology-based and MRI Data-driven Modeling to Predict Response to Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer
2025-01, Radiology. Artificial intelligence
research paper 结合基于生物学的模型和MRI数据驱动的深度学习来预测三阴性乳腺癌患者对新辅助化疗的反应 整合了基于生物学的数学模型和卷积神经网络(CNN)来预测肿瘤对新辅助化疗的时空演变 研究为回顾性研究,样本量相对较小(118名患者) 预测三阴性乳腺癌患者对新辅助化疗的反应 局部晚期三阴性乳腺癌患者 digital pathology breast cancer MRI, deep learning CNN image 118名女性患者(中位年龄51岁,范围29-78岁)
863 2025-06-14
SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans
2025-01, Radiology. Artificial intelligence
研究论文 开发了一种名为SCIseg的深度学习工具,用于在T2加权MRI扫描上自动分割脊髓和脊髓损伤中的髓内病变 SCIseg是一个开源工具,通过主动学习的三阶段过程训练,能够自动分割髓内SCI病变和脊髓,并在多样化的数据集上表现出色 研究未提及模型在不同扫描参数或病变类型间的泛化能力 开发自动分割脊髓损伤中髓内病变的深度学习工具 脊髓损伤患者的T2加权MRI扫描 数字病理 脊髓损伤 T2加权MRI扫描 CNN 图像 191名脊髓损伤患者
864 2025-06-14
Deep Learning Applied to Diffusion-weighted Imaging for Differentiating Malignant from Benign Breast Tumors without Lesion Segmentation
2025-01, Radiology. Artificial intelligence
研究论文 评估和比较不同人工智能模型在扩散加权成像(DWI)中区分良性和恶性乳腺肿瘤的性能,并与放射科医生的评估进行比较 应用深度学习模型(特别是小型2D CNN)在无需病灶分割的情况下,利用DWI数据区分乳腺肿瘤的良恶性,且性能与放射科医生相当 研究为回顾性设计,样本量相对较小(334个乳腺病灶),且所有患者均为女性 评估AI模型在乳腺肿瘤良恶性鉴别中的性能 乳腺肿瘤患者 计算机视觉 乳腺癌 扩散加权成像(DWI) 2D CNN, ResNet-18, EfficientNet-B0, 3D CNN 医学影像 293名女性患者的334个乳腺病灶
865 2025-06-14
Innovative data techniques for centrifugal pump optimization with machine learning and AI model
2025, PloS one IF:2.9Q1
research paper 本文探讨了利用机器学习和AI模型优化离心泵的数据技术 采用Dewesoft FFT DAQ系统和传感器融合技术提取高质量数据,结合EDA、数据可视化和特征工程提升数据可解释性,并通过假设测试验证数据完整性 未提及具体模型在极端条件下的表现或泛化能力 提高离心泵的运营效率并减少模型训练时间 离心泵机器(CPM) machine learning NA Exploratory Data Analysis (EDA), Data Visualization, Feature Engineering (FE) machine learning classifiers, deep learning algorithms sensor data NA
866 2025-06-14
A User-Friendly Machine Learning Pipeline for Automated Leaf Segmentation in Atriplex lentiformis
2025, Bioinformatics and biology insights IF:2.3Q3
研究论文 本文介绍了一种用于植物表型分析的端到端深度学习管道,专注于自动化叶片分割 结合了微调的Mask R-CNN模型与自然语言提示技术,并集成了QR码自动识别功能,开发了用户友好的Streamlit网络应用 训练数据集较小(仅176张植物图像) 开发一个准确、可扩展且用户友好的自动化叶片分割管道 Atriplex lentiformis植物的叶片 计算机视觉 NA 深度学习 Mask R-CNN, Segment Anything Model (SAM), Grounded SAM 图像 176张植物图像
867 2025-06-14
An integrated approach for mental health assessment using emotion analysis and scales
2025 Jan-Dec, Healthcare technology letters IF:2.8Q3
research paper 该研究提出了一种结合情绪分析和量表的综合方法进行心理健康评估,特别是针对抑郁症的初步评估 整合了四种模块(面部情绪识别、量表问卷、语音情绪识别和医生聊天)进行抑郁症评估,提高了预测的准确性 情绪识别的准确性仍有提升空间,且用户可能需要与真实医生交流以消除疑虑 开发一种综合方法,通过情绪分析和量表评估抑郁症 抑郁症患者或潜在患者 machine learning mental illness Facial Emotion Recognition (FER), Speech Emotion Recognition (SER), 量表问卷 深度学习模型(未明确具体类型) image, audio, text 使用了FER2013数据集以及RAVDESS、TESS、SAVEE和CREMA-D数据集
868 2025-06-14
Integration of T cell repertoire, CyTOF, genotyping and symptomatology data reveals subphenotypic variability in COVID-19 patients
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 该研究通过整合T细胞受体库、CyTOF、基因分型和症状学数据,揭示了COVID-19患者的亚表型变异性 使用LCM-BIC算法整合多种免疫表型和遗传数据,识别出三个新的患者聚类,并通过深度学习分析TCR氨基酸序列,发现与疾病严重程度相关的SARS-CoV-2特异性TCR序列 样本量较小(61名患者),且仅来自西班牙人群,可能限制结果的普适性 通过整合多种数据识别COVID-19患者的免疫和遗传特征,以帮助分层和管理患者 61名西班牙COVID-19患者(33名轻度,28名重度) 免疫学 COVID-19 CyTOF, TCRseq, SNP分析, 深度学习 LCM-BIC算法, 深度学习模型 免疫表型数据, 基因分型数据, 症状学数据 61名COVID-19患者(33名轻度,28名重度)
869 2025-06-14
Prediction of CRISPR-Cas9 on-target activity based on a hybrid neural network
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 提出了一种基于混合神经网络CRISPR_HNN的CRISPR-Cas9靶向活性预测方法 整合了MSC、MHSA和BiGRU模块,有效捕捉局部动态特征和全局长距离依赖关系,并采用One-hot Encoding和Label Encoding策略 未提及具体的数据集局限性或模型泛化能力测试 提高sgRNA活性的预测准确性,以增强CRISPR-Cas9基因编辑技术的安全性和有效性 CRISPR-Cas9系统中的sgRNA活性 机器学习 NA CRISPR-Cas9基因编辑技术 混合深度神经网络(整合MSC、MHSA和BiGRU) 基因序列数据 未明确提及具体样本量,仅说明在公共数据集上测试
870 2025-06-13
Minimal sourced and lightweight federated transfer learning models for skin cancer detection
2025-01-21, Scientific reports IF:3.8Q1
research paper 该论文提出了一种使用最小资源和轻量级联邦迁移学习模型高精度分类皮肤癌类型的技术 采用最小资源预训练深度学习模型(如EfficientNetV2S、EfficientNetB3、ResNet50和NasNetMobile)进行迁移学习,并应用于联邦学习生态系统,分析相同和非相同分布数据集的影响 未提及具体的数据集来源和样本多样性,可能影响模型的泛化能力 开发高精度的皮肤癌分类技术,减少资源消耗 皮肤癌病变图像 computer vision skin cancer federated transfer learning EfficientNetV2S, EfficientNetB3, ResNet50, NasNetMobile image NA
871 2025-06-13
Predicting branch retinal vein occlusion development using multimodal deep learning and pre-onset fundus hemisection images
2025-01-21, Scientific reports IF:3.8Q1
research paper 使用多模态深度学习和发病前眼底半切图像预测分支视网膜静脉阻塞的发展 开发了一种基于深度学习的多模态模型,结合眼底图像和血管分割结果,提高了分支视网膜静脉阻塞的预测准确性 样本量较小,需要更大规模的多中心数据集来提高临床实用性和预测准确性 预测分支视网膜静脉阻塞的发生 分支视网膜静脉阻塞患者的眼底图像 digital pathology branch retinal vein occlusion deep learning U-net image 27只BRVO受影响的眼睛与81只未受影响的眼底半切图像(27只对侧和54只同侧)
872 2025-06-13
Deep-learning based electromagnetic navigation system for transthoracic percutaneous puncture of small pulmonary nodules
2025-01-20, Scientific reports IF:3.8Q1
research paper 开发了一种结合深度学习和电磁导航技术的经皮肺小结节穿刺系统,并在模型和动物实验中验证了其性能 结合多种深度学习模型与电磁及空间定位技术,开发了新型电磁导航穿刺系统,用于亚厘米级肺结节的穿刺 研究仅在模型和动物实验中进行,尚未在人体临床试验中验证 提高经皮肺小结节穿刺的技术成功率和操作效率 亚厘米级肺结节 digital pathology lung cancer electromagnetic navigation, CT-guided deep learning models image 模型研究和动物实验(具体数量未提及)
873 2025-06-13
Visual impairment prevention by early detection of diabetic retinopathy based on stacked auto-encoder
2025-01-20, Scientific reports IF:3.8Q1
research paper 提出了一种基于增强堆叠自编码器的方法,用于糖尿病视网膜病变的早期检测和分期分类 与传统的CNN方法相比,该方法通过减少时间复杂性、最小化错误和增强噪声降低,提供了更高的可靠性 未提及具体局限性 开发一种准确且高效的方法来分类糖尿病视网膜病变的不同阶段,以实现早期疾病诊断和预防失明 糖尿病视网膜病变患者 digital pathology diabetic retinopathy stacked auto-encoders SAE image 35,126张视网膜眼底图像,包括一个健康阶段和四个糖尿病视网膜病变阶段
874 2025-06-13
Predicting drug and target interaction with dilated reparameterize convolution
2025-01-20, Scientific reports IF:3.8Q1
research paper 本文提出了一种名为Rep-ConvDTI的新型药物-靶点相互作用预测框架,利用大核卷积块提取大规模序列信息,并引入重参数化方法和门控注意力机制以提高预测性能 设计了用于提取大规模序列信息的大核卷积块,并引入重参数化方法帮助大核卷积捕获小规模信息,同时开发了门控注意力机制以更高效地表征药物与靶点的相互作用 未明确提及具体局限性 预测药物-靶点相互作用(DTI),解决药物研发中的关键挑战 药物和靶点的相互作用 machine learning NA 重参数化方法、门控注意力机制 Rep-ConvDTI(基于大核卷积的模型) 序列信息 三个基准数据集
875 2025-06-13
Deep learning of noncontrast CT for fast prediction of hemorrhagic transformation of acute ischemic stroke: a multicenter study
2025-Jan-15, European radiology experimental IF:3.7Q1
研究论文 本研究开发并验证了一个基于非对比CT和临床数据的集成模型,用于预测急性缺血性卒中患者静脉溶栓后的出血性转化及其亚型 首次提出结合临床数据和NCCT深度学习的集成模型,用于预测AIS患者IVT后的HT及其预后不良亚型PH和PH-2,性能优于现有临床评分系统 研究为回顾性设计,样本量相对有限(445例),且来自六个中心可能存在数据异质性 开发预测急性缺血性卒中静脉溶栓后出血性转化的精准模型 接受静脉溶栓治疗的急性缺血性卒中患者 数字病理学 心血管疾病 非对比CT(NCCT) 集成模型(eXtreme Gradient Boosting + 深度学习) 医学影像+临床数据 445例IVT治疗的AIS患者(训练集344例,测试集101例)
876 2025-06-13
Efficient evidence selection for systematic reviews in traditional Chinese medicine
2025-Jan-15, BMC medical research methodology IF:3.9Q1
研究论文 本文介绍了一种新颖的精确优先综合信息提取和选择程序,旨在提高中医药系统评价中证据选择的效率和准确性 结合了深度学习模型(Evi-BERT与基于规则的方法)、布尔逻辑算法和扩展检索策略,实现自动且准确的证据选择 方法的全部潜力需要进一步验证 提高中医药系统评价和临床指南中证据选择的效率和准确性 中医药相关的系统评价文献 自然语言处理 NA Evi-BERT与基于规则的方法结合布尔逻辑算法 BERT 文本 十篇高质量的中医药相关系统评价
877 2025-06-13
Effect of feedback-integrated reflection, on deep learning of undergraduate medical students in a clinical setting
2025-Jan-14, BMC medical education IF:2.7Q1
research paper 研究反馈整合反思对本科医学生在妇科临床环境中深度学习的影响 比较反馈整合反思与单独反思对医学生高阶多选题分数的提升效果 样本量较小(68名医学生),且研究仅针对妇科临床环境 评估反馈整合反思对医学生深度学习的效果 本科医学生 医学教育 NA 随机对照试验 NA 测试分数 68名本科医学生
878 2025-06-13
Mitigating catastrophic forgetting in Multiple sclerosis lesion segmentation using elastic weight consolidation
2025, NeuroImage. Clinical
研究论文 该研究首次将弹性权重巩固(EWC)应用于多发性硬化(MS)病变分割的领域增量学习,以缓解灾难性遗忘问题 首次在MS病变分割的领域增量学习中使用EWC,显著减少了灾难性遗忘,并在少量目标域数据下实现了性能提升 研究仅使用了公开数据集和内部数据集进行验证,未涉及更广泛的临床数据 解决MS病变分割中深度学习模型的领域适应问题,减少灾难性遗忘 多发性硬化(MS)病变的MRI图像分割 数字病理 多发性硬化 弹性权重巩固(EWC),迁移学习(TL) 3D U-Net MRI图像 公开数据集(WMH2017和Shifts)及内部数据集,少量目标域图像(3-5张)
879 2025-06-13
Student engagement assessment using multimodal deep learning
2025, PloS one IF:2.9Q1
研究论文 提出了一种基于多模态深度学习的框架,用于学生参与度评估 结合视频、文本和日志三种模态数据,采用异步数据融合和深度学习模型评估学生参与度,并使用梯度幅度映射区分参与度水平的细微差异 未明确提及具体局限性 提升学生积极表现并优化教学方法 学生参与度 机器学习 NA 多模态深度学习 CNN 视频、文本、日志 未明确提及样本数量
880 2025-06-13
Enhancing ECG disease detection accuracy through deep learning models and P-QRS-T waveform features
2025, PloS one IF:2.9Q1
研究论文 本研究利用深度学习和P-QRS-T波形特征提高心电图(ECG)疾病检测的准确性 结合先进的信号处理和深度学习技术,使用P-QRS-T特征进行精确的多类心脏病分类 研究主要基于PTB-XL数据库,可能在其他数据集上的泛化能力有待验证 开发一种稳健的方法,用于分类多种心脏异常 心电图(ECG)记录 数字病理 心血管疾病 Butterworth带通滤波器和离散小波变换(DWT)db-8,SMOTE-NC CNN和DNN ECG信号 PTB-XL数据库中的ECG记录
回到顶部