本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1341 | 2025-01-23 |
The first geospatial dataset of irrigated fields (2020-2024) in Vojvodina (Serbia)
2025-Jan-18, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04443-9
PMID:39827194
|
研究论文 | 本文创建了一个关于塞尔维亚伏伊伏丁那地区2020-2024年灌溉田地的地理空间数据集,旨在支持可持续水资源管理、农业发展和环境保护 | 首次创建了包含地理位置、作物类型和灌溉设备信息的区域灌溉田地数据集,为机器学习模型提供高质量训练数据 | 数据收集成本高且劳动密集,数据集仅覆盖伏伊伏丁那地区 | 提供可访问的灌溉田地数据集,用于构建或微调机器学习和深度学习模型,以自动检测灌溉田地 | 伏伊伏丁那地区的灌溉田地 | 地理信息系统 | NA | 卫星影像分析 | 机器学习和深度学习模型 | 地理空间数据 | 1256块田地 |
1342 | 2025-01-23 |
Multiscale wildfire and smoke detection in complex drone forest environments based on YOLOv8
2025-Jan-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-86239-w
PMID:39827308
|
研究论文 | 本文提出了一种基于改进YOLOv8的模型,用于复杂无人机森林环境中的多尺度野火和烟雾检测 | 在C2F模块中使用局部卷积代替全卷积,并集成EMA模块以增强特征通道交互建模能力和上下文信息利用,同时在Backbone中引入AgentAttention模块优化特征提取,设计BiFormer模块自适应融合全局和局部特征,显著提升模型的多尺度和多角度检测能力 | 未提及具体局限性 | 提高森林火灾和烟雾检测的准确性和效率,支持森林火灾预警、应急响应和损失减少 | 森林火灾和烟雾 | 计算机视觉 | NA | 深度学习 | YOLOv8 | 图像 | 未提及具体样本数量 |
1343 | 2025-01-23 |
GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach
2025-Jan-17, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04401-5
PMID:39824869
|
研究论文 | 本文介绍了GastroHUN,一个基于系统协议的胃部筛查程序的开放数据集,包含8,834张图像和4,729个标注的视频序列 | GastroHUN数据集提供了22个胃部解剖标志的标注,并包含一个额外的类别用于不合格图像,为AI模型开发提供了有价值的资源 | 现有数据集存在标注不一致和可访问性有限的问题,导致模型偏差和泛化能力降低 | 通过提供一个强大的公共数据集和基线深度学习模型,GastroHUN旨在为未来研究提供基准,并帮助开发更有效的算法 | 胃部筛查程序的图像和视频序列 | 数字病理学 | 胃肠道疾病 | 内窥镜检查 | 深度学习模型 | 图像和视频 | 8,834张图像和4,729个视频序列,来自387名患者 |
1344 | 2025-01-23 |
Fusing multispectral information for retinal layer segmentation
2025-Jan-17, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01446-z
PMID:39825030
|
研究论文 | 本文研究了多光谱信息(MSI)对视网膜层分割(RLS)的影响,并展示了将MSI整合到RLS方法中如何显著提高分割精度 | 首次研究了多光谱信息对视网膜层分割的影响,并展示了其在提高分割精度方面的潜力 | 研究主要依赖于光学相干断层扫描(OCT)图像,未涉及其他类型的医学影像 | 探索多光谱信息对视网膜层分割的影响,并提高分割精度 | 视网膜层光学相干断层扫描(OCT)图像 | 计算机视觉 | 眼科疾病 | 光学相干断层扫描(OCT) | 深度学习(DL) | 图像 | NA |
1345 | 2025-01-23 |
Preparing physiotherapists for the future: the development and evaluation of an innovative curriculum
2025-Jan-17, BMC medical education
IF:2.7Q1
DOI:10.1186/s12909-024-06537-1
PMID:39825299
|
研究论文 | 本研究评估了荷兰HAN应用科学大学物理治疗系设计的创新课程PACE的实施情况 | PACE课程采用灵活的学习路径、垂直组织的学习社区、无预设学习活动和课程表,以及持续学习和发展的文化,与传统教育不同 | 需要改进自主学习支持和促进深度学习的教学策略 | 评估PACE课程的实施效果,为未来课程开发提供信息 | 2021-2022年度的本科物理治疗学生和参与该课程的教师 | 教育创新 | NA | 混合方法设计,包括问卷调查、焦点小组、深度访谈和全国进度测试 | NA | 问卷数据、访谈数据、测试结果 | 82名一年级学生和36名教师 |
1346 | 2025-01-23 |
Assessing greenspace and cardiovascular health through deep-learning analysis of street-view imagery in a cohort of US children
2025-Jan-15, Environmental research
IF:7.7Q1
DOI:10.1016/j.envres.2024.120459
PMID:39603586
|
研究论文 | 本研究通过深度学习分析美国儿童的街景图像,评估绿地与心血管健康之间的关系 | 利用深度学习分割算法从街景图像中提取绿地指标,并结合儿童成长阶段的心血管健康数据进行关联分析 | 未发现绿地指标与儿童心血管健康之间的显著纵向关联,且影响可能随儿童成长阶段变化 | 评估街景绿地与儿童心血管健康之间的关系 | 美国儿童 | 计算机视觉 | 心血管疾病 | 深度学习分割算法 | NA | 图像 | Project Viva队列中的儿童,从2007年至2021年跟踪 |
1347 | 2025-01-23 |
Human-Validated Neural Networks for Precise Amastigote Categorization and Quantification to Accelerate Drug Discovery in Leishmaniasis
2025-Jan-14, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.4c08735
PMID:39829493
|
研究论文 | 本研究旨在实现和验证YOLOv8深度学习模型,用于实时检测、量化和分类利什曼原虫无鞭毛体,以增强药物筛选实验 | 使用YOLOv8模型进行利什曼原虫无鞭毛体的实时检测和分类,相比传统显微镜方法更高效且减少了人为误差 | 在区分细胞外无鞭毛体和背景噪声方面存在挑战,需要进一步改进以减少误分类问题 | 提高利什曼病药物筛选实验的准确性和效率 | 利什曼原虫无鞭毛体 | 计算机视觉 | 利什曼病 | 深度学习 | YOLOv8 | 图像 | 470张来自两台显微镜的图像 |
1348 | 2025-01-23 |
Quantifying Monomer-Dimer Distribution of Nanoparticles from Uncorrelated Optical Images Using Deep Learning
2025-Jan-14, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.4c07914
PMID:39829601
|
研究论文 | 本文提出了一种基于深度学习的集成方法,用于从光学图像中自动检测和量化聚合物基质中的纳米颗粒及其寡聚化状态 | 使用光学图像而非传统的SEM或TEM图像进行纳米颗粒检测和寡聚化状态量化,克服了传统方法的破坏性限制 | 光学图像易受噪声、低对比度、各向异性形状、点扩散函数重叠、等离子体耦合和分辨率限制的影响 | 开发一种基于光学图像的纳米颗粒检测和寡聚化状态量化方法,以促进纳米技术、材料科学和生物医学研究的发展 | 80纳米金纳米球(AuNSs)及其在聚合物基质中的分布和寡聚化状态 | 计算机视觉 | NA | 深度学习 | YOLOv8 | 光学图像 | 80纳米金纳米球(AuNSs)的光学和SEM图像数据集 |
1349 | 2025-01-23 |
Deep Learning for Biomarker Discovery in Cancer Genomes
2025-Jan-08, bioRxiv : the preprint server for biology
DOI:10.1101/2025.01.06.631471
PMID:39829845
|
研究论文 | 本文提出了一种端到端的深度学习方法,用于分析下一代测序(NGS)数据,以发现癌症基因组中的生物标志物 | 提出了一种多实例学习深度学习框架,能够整合体细胞突变序列来预测微卫星不稳定性(MSI)和同源重组缺陷(HRD)两种复合生物标志物 | 依赖于公开数据库的数据,可能无法涵盖所有癌症类型和突变情况 | 提高NGS数据在生物标志物提取中的潜力,加速精准肿瘤学中新生物标志物的发现 | 癌症患者的基因组数据 | 机器学习 | 癌症 | 下一代测序(NGS) | 深度学习(DL) | 基因组数据 | 3,184名癌症患者的数据,来自TCGA和CPTAC两个公共数据库 |
1350 | 2025-01-23 |
Parametrically guided design of beta barrels and transmembrane nanopores using deep learning
2025-Jan-06, bioRxiv : the preprint server for biology
DOI:10.1101/2024.07.22.604663
PMID:39091726
|
研究论文 | 本文介绍了一种利用深度学习技术进行参数化指导的β桶和跨膜纳米孔设计方法 | 将参数化表示的简单性和形状控制能力扩展到β桶结构设计,结合RoseTTAFold设计方法,实现了高成功率的蛋白质设计 | 需要依赖深度学习模型,且实验验证的样本量有限 | 开发一种更精确和可访问的蛋白质设计方法,特别是针对β桶纳米孔等全局形状决定功能的蛋白质 | β桶结构和跨膜纳米孔 | 蛋白质设计 | NA | 深度学习,RoseTTAFold,RFjoint inpainting,RFdiffusion | 深度学习模型 | 蛋白质结构数据 | 设计了12、14和16链的跨膜纳米孔,并进行了X射线晶体结构验证 |
1351 | 2025-01-23 |
Integrating Prior Knowledge Using Transformer for Gene Regulatory Network Inference
2025-Jan, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202409990
PMID:39605181
|
研究论文 | 本文提出了一种基于Transformer的新框架GRNPT,用于从单细胞RNA测序轨迹中推断基因调控网络,并整合了大型语言模型的嵌入和时序卷积网络自编码器 | GRNPT框架结合了大型语言模型和深度学习技术,显著提高了基因调控网络推断的准确性和泛化能力,特别是在训练数据有限的情况下 | NA | 提高基因调控网络推断的准确性和泛化能力 | 基因调控网络 | 生物信息学 | NA | 单细胞RNA测序(scRNA-seq) | Transformer, 时序卷积网络(TCN)自编码器 | 基因表达数据 | NA |
1352 | 2025-01-23 |
Investigating the Differential Impact of Psychosocial Factors by Patient Characteristics and Demographics on Veteran Suicide Risk Through Machine Learning Extraction of Cross-Modal Interactions
2025, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
PMID:39670369
|
研究论文 | 本研究通过机器学习方法,结合结构化和非结构化电子健康记录(EHR)数据,提高自杀风险预测模型的准确性 | 通过引入平衡参数α,结合结构化和非结构化EHR数据,发现中间α值在不同风险层次上表现最佳,揭示了心理社会构建与患者特征之间的跨模态交互作用 | 研究主要依赖于美国退伍军人事务部的数据,可能限制了结果的普适性 | 提高自杀风险预测模型的准确性,以识别高风险患者并提供针对性护理 | 退伍军人的电子健康记录(EHR)数据 | 机器学习 | 自杀风险 | XGBoost模型,SHAP,逻辑回归模型,岭回归模型 | XGBoost,岭回归 | 结构化和非结构化电子健康记录(EHR)数据 | NA |
1353 | 2025-01-23 |
Application of machine learning algorithms in predicting new onset hypertension: a study based on the China Health and Nutrition Survey
2025, Environmental health and preventive medicine
IF:4.0Q1
DOI:10.1265/ehpm.24-00270
PMID:39805606
|
研究论文 | 本研究利用机器学习算法预测新发高血压的风险,并识别新发高血压患者的特征 | 首次使用AMFormer模型预测新发高血压,并在六种算法中取得最佳结果 | 研究仅基于2011年中国健康与营养调查的数据,样本量和时间跨度有限 | 预测新发高血压的风险并识别相关特征 | 2011年中国健康与营养调查中的非高血压个体 | 机器学习 | 心血管疾病 | 机器学习算法 | Logistic Regression, Support Vector Machine, XGBoost, LightGBM, TabNet, AMFormer | 调查数据 | 4,982名参与者,其中1,017名在4年随访期间发展为高血压 |
1354 | 2025-01-23 |
Expert level of detection of interictal discharges with a deep neural network
2025-Jan, Epilepsia
IF:6.6Q1
DOI:10.1111/epi.18164
PMID:39530797
|
研究论文 | 本文比较了使用深度神经网络与专家在脑电图(EEG)中检测间歇性癫痫样放电(IEDs)的表现,评估其潜在应用性 | 深度神经网络在IEDs检测中的表现与临床专家相当,且在外部验证中显示出与原始报告的高度一致性 | 主要限制在于专家间的高变异性,导致在某些情况下存在分歧 | 评估深度神经网络在EEG中检测IEDs的潜在应用性 | 脑电图(EEG)中的间歇性癫痫样放电(IEDs) | 机器学习 | 癫痫 | 深度神经网络 | 深度神经网络 | 脑电图(EEG)数据 | 内部验证包括22个有IEDs的EEG研究和28个对照EEG研究,外部验证包括174个EEG研究 |
1355 | 2025-01-23 |
Breast cancer classification in point-of-care ultrasound imaging-the impact of training data
2025-Jan, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.12.1.014502
PMID:39830074
|
研究论文 | 本文探讨了通过增加训练数据的不同技术来改进用于分类点-of-care超声(POCUS)图像的分类网络 | 通过比较不同的数据增强技术,包括数据增强、直方图匹配、直方图均衡化和循环一致对抗网络(CycleGANs),显著提高了分类网络的性能 | 研究主要依赖于POCUS图像和标准超声(US)图像,可能限制了结果的普适性 | 提高用于分类POCUS图像的分类网络的性能,以促进乳腺癌的早期检测 | 乳腺癌的POCUS图像和标准超声(US)图像 | 计算机视觉 | 乳腺癌 | 数据增强、直方图匹配、直方图均衡化、循环一致对抗网络(CycleGANs) | 分类网络 | 图像 | 两个数据集,包括POCUS图像和标准超声(US)图像 |
1356 | 2025-01-23 |
Zero-Shot Adaptation for Approximate Posterior Sampling of Diffusion Models in Inverse Problems
2025, Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision
DOI:10.1007/978-3-031-73010-8_26
PMID:39831070
|
研究论文 | 本文提出了一种零样本近似后验采样方法(ZAPS),用于解决扩散模型在逆问题中的应用问题 | ZAPS方法通过零样本训练和物理引导的损失函数来学习每个不规则时间步的对数似然权重,从而提高了图像生成和收敛速度 | ZAPS方法在计算效率上依赖于对角化近似,这可能会影响其在高维数据上的表现 | 研究目标是提高扩散模型在逆问题中的推理速度和重建质量 | 研究对象是扩散模型在逆问题中的应用,特别是高斯和运动去模糊、修复和超分辨率等问题 | 计算机视觉 | NA | 零样本训练、物理引导的损失函数 | 扩散模型 | 图像 | NA |
1357 | 2025-01-23 |
A Self-supervised Deep Learning Model for Diagonal Sulcus Detection with Limited Labeled Data
2025-Jan, Neuroinformatics
IF:2.7Q3
DOI:10.1007/s12021-024-09700-7
PMID:39777603
|
研究论文 | 本文提出了一种基于深度学习的自监督模型,用于在有限标注数据的情况下检测大脑中的对角线沟(ds) | 首次提出使用自监督学习和卷积自编码器来检测对角线沟,并在有限标注数据的情况下实现了较高的检测精度 | 模型依赖于有限的标注数据,且手动标注的挑战性可能影响模型的性能 | 开发一种自动检测大脑对角线沟的深度学习模型,以解决现有方法精度低的问题 | 大脑中的对角线沟(ds) | 数字病理学 | NA | 自监督学习,卷积自编码器 | 卷积自编码器 | 图像 | 未明确说明具体样本数量,但使用了有限的标注数据集 |
1358 | 2025-01-23 |
Right Ventricular Function: Deep Learning's Prognostic Edge in Mitral Regurgitation
2025-Jan, Circulation. Cardiovascular imaging
DOI:10.1161/CIRCIMAGING.124.017788
PMID:39836731
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1359 | 2025-01-23 |
Deep Learning-Enabled Assessment of Right Ventricular Function Improves Prognostication After Transcatheter Edge-to-Edge Repair for Mitral Regurgitation
2025-Jan, Circulation. Cardiovascular imaging
DOI:10.1161/CIRCIMAGING.124.017005
PMID:39836730
|
研究论文 | 本研究探讨了深度学习模型预测的右心室射血分数(RVEF)对接受经导管边缘对边缘修复(TEER)的严重二尖瓣反流(MR)患者预后的评估价值 | 利用深度学习模型从二维超声心动图视频中准确预测RVEF,并证明其在预测TEER后一年死亡率方面优于传统的三尖瓣环平面收缩偏移测量 | 研究仅基于二维超声心动图视频,未涉及三维成像数据,且样本量有限 | 评估深度学习预测的RVEF值对严重MR患者TEER后预后的预测价值 | 接受TEER的严重MR患者 | 数字病理学 | 心血管疾病 | 深度学习 | 深度学习模型 | 视频 | 1154名患者 |
1360 | 2025-01-23 |
Automating egg damage detection for improved quality control in the food industry using deep learning
2025-Jan, Journal of food science
IF:3.2Q2
DOI:10.1111/1750-3841.17553
PMID:39838604
|
研究论文 | 本研究利用深度学习算法自动识别鸡蛋的裂纹和表面损伤,旨在提高食品行业中的鸡蛋质量控制 | 采用四种不同的卷积神经网络模型(GoogLeNet、VGG-19、MobileNet-v2和ResNet-50)进行鸡蛋损伤检测,其中GoogLeNet模型达到了最高的分类准确率(98.73%) | 研究中仅使用了794张鸡蛋图像,样本量相对较小,可能影响模型的泛化能力 | 提高食品行业中鸡蛋质量控制的自动化水平 | 鸡蛋的裂纹和表面损伤 | 计算机视觉 | NA | 深度学习 | CNN(GoogLeNet、VGG-19、MobileNet-v2、ResNet-50) | 图像 | 794张鸡蛋图像(包括受损和完好两类) |