深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202501] [清除筛选条件]
当前共找到 2587 篇文献,本页显示第 1341 - 1360 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1341 2025-04-16
Localization and detection of deepfake videos based on self-blending method
2025-01-31, Scientific reports IF:3.8Q1
research paper 本文提出了一种基于自混合方法的深度伪造视频定位与检测技术 提出了一种无需伪造样本的空间训练方法,通过多部分局部位移变形和融合技术生成更多样化的深度伪造特征数据,并利用Swin-Unet模型结合多种损失函数提高定位和检测精度 在训练数据集之外的伪造视频检测性能可能有限,且缺乏细粒度标注的数据集可能影响定位精度 提高深度伪造视频的检测准确性和被篡改区域的定位精度 深度伪造视频 computer vision NA 多部分局部位移变形和融合技术 Swin-Unet video FF++、Celeb-DF和DFDC等数据集
1342 2025-04-16
Automated strabismus detection and classification using deep learning analysis of facial images
2025-01-31, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于深度学习的自动检测和分类斜视的新方法 利用CNN在面部图像上实现高精度的斜视检测和分类,包括二分类和多分类任务 数据集规模有限,尤其是多分类任务的数据量较少 开发一种自动化的斜视检测和分类方法,以辅助医疗专业人员进行早期诊断和治疗规划 面部图像 计算机视觉 斜视 深度学习 CNN 图像 二分类任务包含4,257张面部图像(1,599例正常,2,658例斜视),多分类任务包含622张图像(480例斜视,142例非斜视)
1343 2025-04-16
An interpretable machine learning model for seasonal precipitation forecasting
2025, Communications earth & environment IF:8.1Q1
研究论文 介绍了一种名为TelNet的可解释机器学习模型,用于短至中期季节性降水预测 TelNet模型采用简单的编码器-解码器-头部架构,能够在数据有限的情况下进行训练,并通过变量选择权重实现实例和提前时间的预测解释 模型在数据量有限的情况下训练,可能影响其泛化能力 开发一种高准确性和可解释性的季节性降水预测模型 季节性降水预测 机器学习 NA 序列到序列机器学习 TelNet(编码器-解码器-头部架构) 季节性降水值和气候指数 多次重采样的训练、验证和测试集
1344 2025-04-16
Practical implementation and impact of the 4R principles in ethnopharmacology: Pursuing a more humane approach to research
2025, Frontiers in pharmacology IF:4.4Q1
research paper 本文探讨了在民族药理学研究中实施4R原则(减少、优化、替代和责任)的实际方法和影响,以追求更人道的研究方法 引入了4R原则中的'责任'原则,强调研究人员在实验过程中对动物福利的伦理义务,扩展了传统的3R原则 未具体说明实施4R原则在实际研究中的具体挑战或障碍 提升民族药理学研究中动物实验的伦理标准,推动更人道的科学研究方法 民族药理学研究中的动物实验 民族药理学 NA 3D器官样体、深度学习技术 NA NA NA
1345 2025-04-16
Enhancing multilevel tea leaf recognition based on improved YOLOv8n
2025, Frontiers in plant science IF:4.1Q1
research paper 该研究提出了一种改进的YOLOv8n模型(T-YOLOv8n),用于增强多层级茶叶识别,以提高自动化茶叶采摘的效率和准确性 引入了重叠标记的茶叶类别数据集生成方法,并在T-YOLOv8n模型中整合了CBAM和BiFPN模块,优化了多尺度特征融合,同时结合CIOU和Focal Loss函数提高了边界框预测的准确性和稳定性 未明确提及具体的数据集规模或实际部署中的潜在挑战 提升自动化茶叶采摘中不同茶叶类别的识别精度 茶叶叶片 computer vision NA 深度学习 T-YOLOv8n(基于YOLOv8n改进) 图像 NA
1346 2025-04-14
Comparative Analysis of nnUNet and MedNeXt for Head and Neck Tumor Segmentation in MRI-Guided Radiotherapy
2025, Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings
research paper 该研究比较了nnUNet和MedNeXt在MRI引导放疗中头颈部肿瘤分割的性能 在HNTS-MRG24 MICCAI挑战赛中提出了一种自动化分割方法,结合了两种先进的深度学习模型,并在测试阶段取得了优异的成绩 研究仅基于特定的HNTS-MRG2024数据集,可能在其他数据集上的泛化能力有限 开发自动化分割方法以改进头颈部肿瘤在MRI引导放疗中的分割效率 头颈部肿瘤(HNC)的原发肿瘤体积(GTVp)和转移淋巴结肿瘤体积(GTVn) digital pathology head and neck cancer MRI nnUNet, MedNeXt MRI图像 150例头颈部癌症患者的MRI扫描
1347 2025-04-14
Improving fishing ground estimation with weak supervision and meta-learning
2025, PloS one IF:2.9Q1
研究论文 本研究提出了一种结合弱监督和元学习的训练策略,用于改进基于海面温度模式的渔场估计 采用弱监督和元学习相结合的方法,利用部分标注或噪声数据(如轨迹数据)进行预训练,再通过元学习器在预训练过程中减轻标签噪声,从而提高模型性能 模型训练仍需要一定量的捕捞数据进行标注,且轨迹数据提供的渔场表示不够精确 改进渔场估计方法,提高渔业生产效率 渔场位置估计 机器学习 NA 深度学习 关键点检测器 海面温度模式数据、捕捞数据、轨迹数据 NA
1348 2025-04-14
A deep learning-based approach for the detection of cucumber diseases
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种基于深度学习的黄瓜病害检测方法,利用VGG19架构和创新的迁移学习方法进行病害分类 采用创新的迁移学习方法,相比传统方法在未见测试数据上实现了更高的平衡准确率(97.66% vs 93.87%) 未提及具体数据集的规模限制或模型在其他作物上的泛化能力 提高黄瓜病害检测的准确性,以保障作物质量和食品安全 黄瓜植株及其病害(炭疽病、细菌性枯萎病、肚腐病、霜霉病、健康黄瓜、健康叶片、腐霉果腐病、茎腐病等) 计算机视觉 植物病害 迁移学习 VGG19 图像 未明确提及具体样本数量
1349 2025-04-14
CWMS-GAN: A small-sample bearing fault diagnosis method based on continuous wavelet transform and multi-size kernel attention mechanism
2025, PloS one IF:2.9Q1
研究论文 提出了一种基于连续小波变换和多尺寸核注意力机制的小样本轴承故障诊断方法CWMS-GAN 采用连续小波卷积策略(CWCL)替代传统GAN中的卷积操作以捕获信号的频域特征,并设计了多尺寸核注意力机制(MSKAM)从不同尺度提取特征并自适应选择重要特征以提高生成信号的准确性和真实性 未提及具体样本量限制或实际工业应用中的潜在挑战 解决小样本条件下轴承故障诊断性能下降的问题 轴承振动信号 故障诊断 NA 连续小波变换(CWT), 生成对抗网络(GAN) CWMS-GAN (基于GAN的改进模型) 振动信号(时域和频域) 在CWRU和MFPT数据集上进行实验(未明确样本数量)
1350 2025-04-14
Deep Learning-Based Image Restoration and Super-Resolution for Fluorescence Microscopy: Overview and Resources
2025, Methods in molecular biology (Clifton, N.J.)
review 本文综述了深度学习方法在荧光显微镜图像恢复和超分辨率中的应用,并提供了相关资源和工具 提供了深度学习方法在荧光显微镜图像处理中的最新进展和资源,包括开源数据库和代码库 未提及具体方法的性能比较或实际应用中的具体限制 综述深度学习方法在荧光显微镜图像处理中的应用,促进该领域的研究参与 荧光显微镜图像 computer vision NA deep learning NA image NA
1351 2025-04-13
Assessing the cardioprotective effects of exercise in APOE mouse models using deep learning and photon-counting micro-CT
2025, PloS one IF:2.9Q1
research paper 本研究利用深度学习和光子计数微型CT评估运动对不同APOE基因型小鼠心脏结构和功能的影响 结合光子计数CT和深度学习分割技术评估运动对APOE小鼠模型的保护作用 研究仅基于小鼠模型,结果可能无法直接外推至人类 评估运动对不同APOE基因型小鼠心脏结构和功能的影响 140只不同APOE基因型小鼠 digital pathology cardiovascular disease photon-counting computed tomography (PCCT), deep learning-based segmentation 3D U-Net image 140只小鼠(按APOE基因型、性别和运动方案分组)
1352 2025-04-13
Advancing personalized diagnosis and treatment using deep learning architecture
2025, Frontiers in medicine IF:3.1Q1
研究论文 本研究提出了一种名为ImmunoNet的深度学习框架,用于提高自身免疫性疾病的诊断和治疗准确性 结合遗传、分子和临床数据,利用CNN和MLP分析大规模数据集,通过可解释AI技术和联邦学习提高模型的解释性和隐私保护 未提及具体的数据集规模或实际临床应用中的潜在问题 提高自身免疫性疾病的诊断准确性和个性化治疗策略 自身免疫性疾病患者 机器学习 自身免疫性疾病 深度学习 CNN, MLP 遗传数据、分子数据、临床数据 NA
1353 2025-04-13
Preliminary exploratory study on differential diagnosis between benign and malignant peripheral lung tumors: based on deep learning networks
2025, Frontiers in medicine IF:3.1Q1
研究论文 本研究基于深度学习网络开发了一种超声成像模型,用于区分良性和恶性周围型肺肿瘤 研究首次利用超声成像结合深度学习模型(ResNet系列)进行肺肿瘤良恶性鉴别,相比传统X射线、CT和MRI方法具有创新性 研究样本量相对有限(371例),且为回顾性分析,可能存在选择偏倚 开发基于超声成像的深度学习模型以提高肺肿瘤良恶性鉴别诊断准确性 371例接受超声引导经皮肺肿瘤手术的患者 数字病理 肺癌 超声成像 ResNet18/34/50/101/152 超声图像 371例患者(训练集296例,测试集75例)
1354 2025-04-13
Heterogeneous transfer learning model for improving the classification performance of fNIRS signals in motor imagery among cross-subject stroke patients
2025, Frontiers in human neuroscience IF:2.4Q2
研究论文 本文提出了一种跨主题异构迁移学习模型(CHTLM),用于提高中风患者运动想象功能近红外光谱(MI-fNIRS)信号的跨主题分类性能 利用健康个体的标记脑电图(EEG)数据作为源域,通过自适应特征匹配网络对齐源域和目标域的任务相关特征图和卷积层,从而提升分类性能 实验样本量较小,仅涉及八名中风患者的数据 提升中风患者MI-fNIRS信号的跨主题分类性能,以支持中风康复中的脑机接口应用 中风患者的MI-fNIRS信号 脑机接口 中风 功能近红外光谱(fNIRS)和脑电图(EEG) 跨主题异构迁移学习模型(CHTLM) 信号数据 八名中风患者的MI-fNIRS数据
1355 2025-04-13
Image-based food monitoring and dietary management for patients living with diabetes: a scoping review of calorie counting applications
2025, Frontiers in nutrition IF:4.0Q2
综述 本文综述了基于图像的食品监测和饮食管理在糖尿病患者中的应用,特别是卡路里计数应用程序 探讨了利用深度学习和计算机视觉技术自动从食物图像中估算卡路里摄入量的最新进展 标准化、多样化人群的验证以及数据隐私问题是当前面临的主要挑战 研究计算机科学在饮食摄入估计中的作用,特别是食物分割、分类和体积估计以计算卡路里 糖尿病患者 计算机视觉 糖尿病 深度学习 NA 图像 NA
1356 2025-04-13
Plant stem and leaf segmentation and phenotypic parameter extraction using neural radiance fields and lightweight point cloud segmentation networks
2025, Frontiers in plant science IF:4.1Q1
研究论文 本研究提出了一种结合神经辐射场模型和轻量级点云分割网络的方法,用于植物茎叶分割和表型参数提取 提出了一个轻量级点云分割网络PointSegNet,包含GLSA模块和EAFP模块,用于整合局部和全局特征并增强边缘感知能力 NA 开发一种自动提取植物表型参数的方法 玉米、番茄和大豆植物的茎叶 计算机视觉 NA 神经辐射场模型(Nerfacto)、点云分割 PointSegNet 3D点云数据 玉米、番茄和大豆植物样本
1357 2025-04-13
Deep learning-based target spraying control of weeds in wheat fields at tillering stage
2025, Frontiers in plant science IF:4.1Q1
研究论文 本研究结合深度学习设计了目标喷洒决策与滞后算法,并在测试平台上验证其有效性 对YOLOv5s进行轻量化改进并设计目标喷洒决策与滞后算法,解决了硬件操作滞后问题 实验仅使用模拟杂草和模拟分蘖小麦进行台架实验,未在真实田间环境中验证 开发基于深度学习的小麦田杂草目标喷洒控制系统 小麦田分蘖期的杂草 计算机视觉 NA 深度学习 YOLOv5s 图像 模拟杂草和模拟分蘖小麦的台架实验数据集
1358 2025-04-13
Machine learning and artificial intelligence in type 2 diabetes prediction: a comprehensive 33-year bibliometric and literature analysis
2025, Frontiers in digital health IF:3.2Q2
综述 本文对33年(1991-2024年)间机器学习(ML)和人工智能(AI)在2型糖尿病(T2DM)预测中的应用研究进行了全面的文献计量和系统综述 采用文献计量和系统综述方法,结合TF-IDF和专家输入筛选文献,并应用双标准方法评估文献的相关性和影响力 未来研究需要解决泛化性、跨学科T2DM预测研究和社会心理整合方面的不足 综述机器学习与人工智能在2型糖尿病预测中的应用,识别关键趋势、方法和研究空白 2型糖尿病(T2DM)预测研究 机器学习 糖尿病 TF-IDF, PRISMA指南, VOSviewer, Bibliometrix Random Forest, Gradient Boosting, CNN 文献数据 2,351篇文章
1359 2025-04-13
Head and Neck Tumor Segmentation for MRI-Guided Radiation Therapy Using Pre-trained STU-Net Models
2025, Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings
研究论文 本研究比较了nnU-Net v2和STU-Net两种深度学习模型在头颈癌MRI图像中自动分割肿瘤的性能 STU-Net在可扩展性和可迁移性方面进行了关键改进,参数规模从1400万到14亿不等,并利用TotalSegmentator等大规模数据集进行预训练,更有效地捕捉复杂多变的肿瘤结构 NA 提高MRI引导放射治疗中头颈癌肿瘤分割的准确性 头颈癌患者的MRI图像 数字病理 头颈癌 深度学习 STU-Net, nnU-Net v2 MRI图像 NA
1360 2025-04-13
Transformers in RNA structure prediction: A review
2025, Computational and structural biotechnology journal IF:4.4Q2
综述 本文全面回顾了基于Transformer的RNA结构预测模型 深入分析了Transformer架构的创新如何提升RNA结构预测性能及其现有不足 未具体说明Transformer模型在RNA结构预测中的具体局限性 探讨Transformer在RNA结构预测领域的应用与发展 RNA的二级和三级结构 自然语言处理 NA Transformer模型 Transformer 序列数据 NA
回到顶部