深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202501] [清除筛选条件]
当前共找到 3218 篇文献,本页显示第 1601 - 1620 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1601 2025-10-07
An Interventional Brain-Computer Interface for Long-Term EEG Collection and Motion Classification of a Quadruped Mammal
2025, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 提出一种新型介入式脑机接口,通过静脉植入电极采集绵羊运动时的脑电信号并进行运动状态分类 开发无需开颅手术的介入式脑机接口,通过静脉植入电极长期稳定采集颅内脑电信号 研究仅针对绵羊单一物种,样本量有限,未涉及更复杂的运动模式 开发能够长期稳定工作的脑机接口系统,用于运动意图识别 绵羊的运动脑电信号 脑机接口 运动功能障碍 脑电信号采集,功率谱密度分析 深度学习模型 脑电信号 绵羊连续四个月的脑电数据(前三个月训练,第四个月验证) NA 神经网络 准确率 NA
1602 2025-10-07
Traffic accident risk prediction based on deep learning and spatiotemporal features of vehicle trajectories
2025, PloS one IF:2.9Q1
研究论文 提出一种结合CNN、LSTM和GNN的深度学习模型,利用车辆时空轨迹数据预测交通事故风险 创新性地结合三种神经网络模型,综合考虑时空特征和道路网络关系,显著提升预测精度 NA 提高复杂交通环境下交通事故风险预测的准确性 车辆时空轨迹数据 机器学习 NA 深度学习 CNN, LSTM, GNN 车辆轨迹数据 NA NA CNN, LSTM, GNN组合模型 预测精度 NA
1603 2025-10-07
Diagnosis of clear cell renal cell carcinoma via a deep learning model with whole-slide images
2025 Jan-Dec, Therapeutic advances in urology IF:2.6Q2
研究论文 本研究开发了一种基于全切片图像的深度学习模型用于透明细胞肾细胞癌的诊断 首次将全切片图像与深度学习模型结合用于透明细胞肾细胞癌的自动化诊断 样本量相对较小(95例患者),且为单中心回顾性研究 探索基于全切片图像的深度学习模型在透明细胞肾细胞癌诊断中的可行性 透明细胞肾细胞癌患者的病理切片 数字病理 肾细胞癌 全切片图像分析 CNN, 随机森林 图像 95例患者的663张病理切片(506张肿瘤切片,157张正常组织切片) NA NA 准确率, 精确率, 召回率, AUC, 特异性, 灵敏度 NA
1604 2025-10-07
An adaptive convolution neural network model for tuberculosis detection and diagnosis using semantic segmentation
2025, Polish journal of radiology IF:0.9Q4
研究论文 开发了一种基于语义分割的自适应卷积神经网络模型,用于胸部X光片的结核病检测和诊断 提出了结合伽马校正和基于梯度的对比度增强预处理技术,并采用改进的Res-UNet架构进行图像分割,同时开发了新的深度学习网络进行分类 研究主要依赖公开数据集,未在更多临床环境中验证模型泛化能力 通过开发深度学习模型增强胸部X光图像中的结核病检测能力 胸部X光图像中的结核病病变区域,包括上下叶实变、胸腔积液、钙化、空洞形成和粟粒结节 计算机视觉 结核病 胸部X光成像 CNN, Res-UNet 图像 704张胸部X光图像用于训练分割模型,1400张胸部X光扫描用于测试 NA Res-UNet, 自定义卷积神经网络 准确率, 召回率, 精确率, F1分数, Dice系数, Jaccard指数, AUC NA
1605 2025-10-07
Deep Learning-Based Multiclass Framework for Real-Time Melasma Severity Classification: Clinical Image Analysis and Model Interpretability Evaluation
2025, Clinical, cosmetic and investigational dermatology
研究论文 开发基于深度学习的实时黄褐斑严重程度多分类框架,通过临床面部图像分析实现AI辅助诊断 首次将多种CNN架构应用于黄褐斑严重程度实时分类,并通过层间相关性传播进行模型可解释性评估 仅使用单中心临床图像数据,未来需要整合多模态数据进行更全面评估 开发AI辅助的黄褐斑严重程度自动分类系统,提高诊断一致性 临床诊断的黄褐斑患者面部图像 计算机视觉 黄褐斑 临床图像分析 CNN 图像 1368张匿名面部图像 PyTorch GoogLeNet 准确率,精确率,召回率,F1分数,AUC NA
1606 2025-05-04
Performance of Radiomics-based machine learning and deep learning-based methods in the prediction of tumor grade in meningioma: a systematic review and meta-analysis
2025-Jan-24, Neurosurgical review IF:2.5Q1
meta-analysis 评估基于机器学习和深度学习的影像组学方法在预测脑膜瘤WHO分级中的性能 首次通过系统综述和荟萃分析评估ML和DL模型在预测脑膜瘤WHO分级中的表现 需要更多使用外部验证的大规模数据集来进一步验证DL算法的性能 评估机器学习和深度学习模型在预测脑膜瘤WHO分级中的准确性 脑膜瘤患者的影像数据 digital pathology meningioma imaging studies ML/DL image 32项研究,共15,365名患者 NA NA NA NA
1607 2025-05-04
Clinically oriented automatic three-dimensional enamel segmentation via deep learning
2025-Jan-24, BMC oral health IF:2.6Q1
research paper 开发了一种基于深度学习的自动三维牙釉质分割方法,用于临床牙科诊断和治疗 提出了2.5D Attention U-Net模型,能够在少量样本数据集上进行训练,实现高效、准确的牙釉质分割 模型在少量样本数据集上进行训练,可能在大规模数据上的泛化能力有待验证 开发一种自动、高效、准确的牙釉质分割方法,以支持临床牙科诊断和治疗 牙釉质 digital pathology dental disease deep learning 2.5D Attention U-Net image 手动标注的牙釉质分割数据 NA NA NA NA
1608 2025-05-04
Spatial transcriptome reveals histology-correlated immune signature learnt by deep learning attention mechanism on H&E-stained images for ovarian cancer prognosis
2025-Jan-24, Journal of translational medicine IF:6.1Q1
研究论文 利用深度学习注意力机制从H&E染色图像中学习与组织学相关的免疫特征,用于卵巢癌预后预测 通过空间转录组数据解析深度学习模型学习的注意力特征,揭示其与免疫特征的关联 研究依赖于特定数据集(TCGA),可能限制了结果的普适性 预测卵巢癌患者的预后,并理解预测机制 卵巢癌患者的H&E染色肿瘤样本 数字病理学 卵巢癌 空间转录组测序 ResNet101 CNN(带注意力机制) 图像(H&E染色全切片图像) 335名初治高级别浆液性卵巢癌患者的773张H&E染色切片 NA NA NA NA
1609 2025-05-04
Evaluating the impact of ESICM 2023 guidelines and the new global definition of ARDS on clinical outcomes: insights from MIMIC-IV cohort data
2025-Jan-23, European journal of medical research IF:2.8Q2
研究论文 本研究评估了ESICM 2023指南和新全球ARDS定义对临床结果的影响,并基于MIMIC-IV队列数据进行了分析 比较了新ARDS定义与柏林定义在早期诊断、准确分级和资源有限环境中的应用优势,并建立了早期ARDS识别的预测模型 研究仅基于MIMIC-IV数据库的数据,可能无法完全代表所有临床环境 确定新ARDS定义对低氧性呼吸衰竭患者的影响,并研究新定义下患者的异质性以指导治疗 低氧性呼吸衰竭患者和ARDS患者 医学研究 急性呼吸窘迫综合征(ARDS) Kaplan-Meier生存分析、层次聚类方法、XGBoost分类器 XGBoost 临床咨询数据 MIMIC-IV数据库中的患者数据 NA NA NA NA
1610 2025-05-04
Machine Learning-Based Quantification of Lateral Flow Assay Using Smartphone-Captured Images
2025-Jan-04, Biosensors
研究论文 本研究开发了基于机器学习和深度学习的模型,用于从智能手机拍摄的侧流层析试纸图像中量化分析物负载 利用机器学习和深度学习模型提升侧流层析试纸的定量分析能力,突破了传统只能进行定性诊断的限制 研究未提及模型在大规模数据集上的泛化能力验证 提升侧流层析试纸的定量分析能力 侧流层析试纸的智能手机拍摄图像 计算机视觉 NA NA 随机森林, CNN 图像 未明确说明样本数量 NA NA NA NA
1611 2025-05-04
Deep-Learning-Based Reconstruction of Single-Breath-Hold 3 mm HASTE Improves Abdominal Image Quality and Reduces Acquisition Time: A Quantitative Analysis
2025-Jan-03, Current oncology (Toronto, Ont.)
研究论文 本研究通过深度学习重建技术改进单次屏气3毫米HASTE MRI的图像质量并缩短采集时间 使用深度学习重建技术优化超薄层厚(3毫米)HASTE MRI,显著提升图像质量并减少63-69%的采集时间 样本量较小(35名参与者),且仅在上腹部MRI中验证 提升腹部MRI图像质量并加速成像采集 上腹部MRI扫描 医学影像分析 NA 深度学习重建(DL-HASTE) 深度学习 MRI图像 35名参与者(5名健康志愿者和30名患者) NA NA NA NA
1612 2025-05-04
Noninvasive Anemia Detection and Hemoglobin Estimation from Retinal Images Using Deep Learning: A Scalable Solution for Resource-Limited Settings
2025-Jan-02, Translational vision science & technology IF:2.6Q2
研究论文 本研究开发并验证了一种基于深度学习的模型,用于通过眼底图像无创检测贫血、估计血红蛋白水平及识别贫血相关视网膜特征 利用深度学习模型(InceptionV3)从眼底图像中无创预测贫血和血红蛋白水平,并识别贫血相关的视网膜血管特征 研究样本仅限于南印度40岁及以上人群,可能无法推广到其他年龄组或地区 开发一种适用于资源有限环境的无创贫血检测和血红蛋白水平估计方法 2265名40岁及以上的参与者 数字病理学 贫血 深度学习 VGG16, ResNet50, InceptionV3 图像 2265名参与者 NA NA NA NA
1613 2025-05-04
Artificial Intelligence for Optical Coherence Tomography in Glaucoma
2025-Jan-02, Translational vision science & technology IF:2.6Q2
review 本文探讨了人工智能(AI)特别是深度学习(DL)与光学相干断层扫描(OCT)在青光眼诊断和管理中的整合应用 展示了多种DL模型(如CNN、RNN、GAN、自动编码器和LLM)在OCT图像分析中的创新应用,包括提高图像质量、青光眼诊断和疾病进展监测 面临数据可用性、变异性、潜在偏见以及需要广泛验证等挑战 探索AI特别是DL模型如何增强OCT在青光眼管理中的诊断能力 青光眼患者的光学相干断层扫描(OCT)图像 digital pathology glaucoma optical coherence tomography (OCT) CNN, RNN, GAN, autoencoders, LLM image, text NA NA NA NA NA
1614 2025-05-04
Concept-Based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis
2025-Jan, IEEE transactions on medical imaging IF:8.9Q1
research paper 提出了一种基于概念的、可解释的视网膜疾病诊断框架,结合Transformer架构和病灶概念,提升诊断模型的性能和可解释性 将视网膜病灶视为概念,利用Transformer架构捕获长距离依赖关系,实现病灶特征的有效识别,并通过交叉注意力机制构建分类器,提供基于人类可理解病灶概念的解释 未提及具体的数据集规模限制或模型在特定条件下的性能下降情况 提升视网膜疾病诊断模型的性能和可解释性 视网膜疾病诊断 digital pathology 视网膜疾病 Transformer架构,交叉注意力机制 Transformer image 四个眼底图像数据集(未提及具体样本数量) NA NA NA NA
1615 2025-05-04
Automating egg damage detection for improved quality control in the food industry using deep learning
2025-Jan, Journal of food science IF:3.2Q2
研究论文 本研究利用深度学习算法自动识别鸡蛋的裂纹和表面损伤,以提高食品行业中的鸡蛋质量控制 采用四种不同的CNN模型(GoogLeNet、VGG-19、MobileNet-v2和ResNet-50)进行鸡蛋损伤检测,其中GoogLeNet达到了最高的分类准确率(98.73%) 研究仅使用了794张鸡蛋图像,样本量相对较小,可能影响模型的泛化能力 通过自动识别鸡蛋的物理损伤(如裂纹、断裂或其他表面缺陷)来提高食品行业中的鸡蛋质量控制 鸡蛋(包括受损和完好的鸡蛋) 计算机视觉 NA 深度学习 CNN(包括GoogLeNet、VGG-19、MobileNet-v2和ResNet-50) 图像 794张鸡蛋图像(分为受损和完好两类) NA NA NA NA
1616 2025-05-04
Deep Learning-assisted Diagnosis of Extrahepatic Common Bile Duct Obstruction Using MRCP Imaging and Clinical Parameters
2025, Current medical imaging IF:1.1Q3
研究论文 开发了一种结合MRCP影像和临床参数的深度学习分类模型,以提高肝外胆总管梗阻(EHBDO)的诊断准确性 提出了一种多模态深度学习融合模型,整合了MRCP影像特征和临床参数,并应用加权损失函数处理不同特征的重要性差异 样本量有限,仅143名患者有MRCP影像数据 提高肝外胆总管梗阻(EHBDO)的诊断准确性 465名患者(其中143名有MRCP影像) 数字病理 肝外胆总管梗阻 MRCP成像 多模态深度学习融合模型 影像和临床数据 465名患者(143名有MRCP影像) NA NA NA NA
1617 2025-05-04
Construction of a Multi-View Deep Learning Model for the Severity Classification of Acute Pancreatitis
2025-Jan, Discovery medicine IF:2.0Q3
research paper 该研究构建了一个多视角深度学习模型,用于急性胰腺炎(AP)的严重程度分类 结合患者的临床数据和CT影像数据,构建多视角深度学习模型,相比传统单视角评分系统提高了预测准确性 模型对中度严重急性胰腺炎的预测准确率相对较低(64.90%) 开发更准确的急性胰腺炎严重程度预测方法,以辅助临床干预决策 新入院的急性胰腺炎患者 digital pathology acute pancreatitis deep learning DNN, CNN clinical data, CT images NA NA NA NA NA
1618 2025-05-04
Maize quality detection based on MConv-SwinT high-precision model
2025, PloS one IF:2.9Q1
研究论文 本研究提出了一种基于MConv-SwinT高精度模型的玉米质量检测方法,结合机器视觉和深度学习技术,显著提高了检测准确率 采用Swin Transformer作为基础模型,结合专门设计的卷积块和注意力层,实现了浅层和深层特征的融合与加权,显著提升了分类性能 未提及模型在不同光照条件或不同品种玉米上的泛化能力 提高玉米质量检测的准确性和效率,推动智慧农业发展 高质量、发霉和破碎的玉米图像 计算机视觉 NA 机器视觉,深度学习 MC-Swin Transformer(改进的Swin Transformer模型) 图像 20,152张有效玉米图像 NA NA NA NA
1619 2025-05-04
Correction: Pedestrian POSE estimation using multi-branched deep learning pose net
2025, PloS one IF:2.9Q1
correction 对先前发表的关于使用多分支深度学习姿势网络进行行人姿势估计的文章进行更正 NA NA NA NA computer vision NA NA NA NA NA NA NA NA NA
1620 2025-05-04
Unmanned aerial vehicle based multi-person detection via deep neural network models
2025, Frontiers in neurorobotics IF:2.6Q3
research paper 该研究开发了一种基于深度学习的系统,用于从无人机拍摄的视频中识别多人行为 通过整合不同特征和神经网络模型,提高了识别准确率并保持了鲁棒性,同时具备动态环境适应能力 未提及具体局限性 提升无人机拍摄视频中多人行为识别的准确性和鲁棒性 无人机拍摄的多人行为视频 computer vision NA deep learning, feature extraction deep neural network video MOD20和Okutama-Action数据集 NA NA NA NA
回到顶部