本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1901 | 2025-10-07 |
Improving spleen segmentation in ultrasound images using a hybrid deep learning framework
2025-01-11, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-85632-9
PMID:39799236
|
研究论文 | 提出一种用于超声图像脾脏分割的混合深度学习框架 | 首次提出结合SegFormer和Pix2Pix的两阶段训练方法,并创建了该领域首个脾脏超声图像数据集Spleenex | NA | 改进超声图像中的脾脏分割精度 | 脾脏超声图像 | 计算机视觉 | NA | 超声成像 | CNN, GAN | 图像 | 450张脾脏超声图像 | NA | SegFormerB0, Pix2Pix | mIoU, mDice, MPLE | NA |
| 1902 | 2025-10-07 |
Advanced deep learning algorithms in oral cancer detection: Techniques and applications
2025, Journal of environmental science and health. Part C, Toxicology and carcinogenesis
DOI:10.1080/26896583.2024.2445957
PMID:39819195
|
综述 | 本文全面分析了基于人工智能的口腔癌检测方法,重点关注深度学习模型和图像处理技术 | 提供了对最新AI方法在口腔癌检测中的综合分析,包括卷积神经网络等深度学习模型 | NA | 推进口腔癌的早期诊断,改善患者预后并减轻医疗系统负担 | 口腔癌检测方法和技术 | 计算机视觉 | 口腔癌 | 图像预处理,图像分割,特征提取 | CNN | 医学图像 | NA | NA | 卷积神经网络 | 分类准确率 | NA |
| 1903 | 2025-10-07 |
Ventilator pressure prediction employing voting regressor with time series data of patient breaths
2025 Jan-Mar, Health informatics journal
IF:2.2Q3
DOI:10.1177/14604582241295912
PMID:39988551
|
研究论文 | 提出一种基于投票回归器的混合呼吸机压力预测方法,用于精确预测患者呼吸过程中的呼吸机压力 | 开发了新型混合呼吸机压力预测器(H-VPP),通过分析肺部属性R和C在初始时间步的高值对呼吸机压力的影响 | NA | 预测呼吸机呼吸回路中的气道压力 | COVID-19患者呼吸过程中的呼吸机压力数据 | 机器学习 | COVID-19 | 时间序列数据分析 | 投票回归器 | 时间序列数据 | NA | NA | 混合呼吸机压力预测器(H-VPP) | R平方, 平均绝对误差, 均方误差 | NA |
| 1904 | 2025-10-07 |
Evaluation of stroke sequelae and rehabilitation effect on brain tumor by neuroimaging technique: A comparative study
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0317193
PMID:39992898
|
研究论文 | 本研究开发了一种基于深度学习的SWI-BITR-UNet模型,用于脑卒中后遗症评估和脑肿瘤康复效果的神经影像分析 | 结合SWIN Transformer的局部感受野和移位机制与U-Net架构的有效特征融合策略,专门针对3D医学影像数据设计 | 未提及具体样本量大小和外部验证结果 | 提高脑损伤区域在多模态MRI扫描中的分割精度,改善脑卒中后遗症评估和康复效果监测 | 脑卒中损伤区域和脑肿瘤区域 | 医学影像分析 | 脑卒中,脑肿瘤 | 多模态MRI扫描,神经影像技术 | CNN,Transformer,U-Net | 3D医学影像 | NA | NA | SWI-BITR-UNet,3D CNN编码器-解码器,SWIN Transformer,U-Net | 召回率,精确率,F1分数,Kappa系数,平均交并比,ROC-AUC,豪斯多夫距离,DICE系数 | NA |
| 1905 | 2025-10-07 |
Optimizing Bi-LSTM networks for improved lung cancer detection accuracy
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0316136
PMID:39992919
|
研究论文 | 本研究比较了传统手工特征和深度学习Bi-LSTM网络在肺癌检测中的性能 | 结合手工特征提取与优化的双向长短期记忆网络(Bi-LSTM)进行肺癌检测,在准确率和AUC指标上均取得优异表现 | 未提及具体数据集规模和多样性限制 | 提高肺癌检测准确率,改进计算机辅助诊断系统 | 肺癌医学图像 | 计算机视觉 | 肺癌 | 医学图像分析 | Bi-LSTM, SVM | 医学图像 | NA | NA | Bidirectional Long Short-Term Memory | 准确率, AUC | NA |
| 1906 | 2025-10-07 |
Trustworthy diagnosis of Electrocardiography signals based on out-of-distribution detection
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0317900
PMID:39999066
|
研究论文 | 提出一种基于分布外检测的心电图信号可信诊断方法 | 结合CNN和注意力机制增强特征提取,并采用Energy和ReAct技术识别分布外心脏病 | NA | 提高心电图诊断的可靠性,特别是对未知类型心脏病的识别能力 | 心电图信号 | 机器学习 | 心血管疾病 | 心电图信号分析 | CNN, Attention机制 | 心电图信号 | MIT-BIH心律失常数据库和INCART 12导联心律失常数据库 | NA | CNN结合注意力机制 | 灵敏度, 特异性 | NA |
| 1907 | 2025-10-07 |
Author name disambiguation based on heterogeneous graph neural network
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0310992
PMID:40009590
|
研究论文 | 提出基于异构图注意力神经网络的作者姓名消歧方法,通过改进特征表示和聚类算法提升消歧性能 | 提出结合关系图异质注意力神经网络的作者消歧方法,引入多重注意力机制改进节点交互学习,并优化传统层次聚类算法 | 未明确说明方法在其他数据集上的泛化能力,实验仅基于Aminer数据集进行验证 | 解决学术论文作者姓名消歧问题,准确将新发表论文分配给对应作者 | 学术论文作者及其发表文献 | 自然语言处理 | NA | 图神经网络,注意力机制 | GNN, 注意力神经网络 | 文本数据,图结构数据 | Aminer数据集 | NA | 关系图异质注意力神经网络,图卷积嵌入模块 | F1-score | NA |
| 1908 | 2025-10-07 |
Untrained perceptual loss for image denoising of line-like structures in MR images
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0318992
PMID:40009630
|
研究论文 | 本研究提出一种用于3D MR图像中线状结构去噪的未训练感知损失方法 | 将感知损失扩展到3D数据,使用未训练网络的特征图进行比较,特别适用于线状结构的图像去噪 | 主要针对线状结构图像,对其他类型图像效果未验证 | 开发适用于线状结构MR图像去噪的深度学习方法 | 脑部血管MR图像和植物根系MR图像 | 计算机视觉 | 脑血管疾病 | 磁共振成像 | CNN | 3D图像 | 536张植物根系MR图像和450张脑部血管MR图像 | NA | 自定义CNN, VGG19 | SSIM | NA |
| 1909 | 2025-05-11 |
Enhancing nnUNetv2 Training with Autoencoder Architecture for Improved Medical Image Segmentation
2025, Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings
DOI:10.1007/978-3-031-83274-1_17
PMID:40337098
|
研究论文 | 本研究开发了一种基于nnUNetv2框架并结合自动编码器架构的新型深度学习模型,用于提高头颈癌MRI引导放疗图像中肿瘤体积的自动分割准确性 | 在nnUNetv2框架中引入自动编码器架构,将原始训练图像作为额外输入通道,并采用MSE损失函数以提高分割精度 | 研究仅针对头颈癌患者,样本量相对有限(150名训练患者和50名测试患者) | 提高MRI引导放疗图像中肿瘤体积的自动分割准确性,优化放射肿瘤学临床工作流程 | 头颈癌患者的MRI引导放疗图像 | 数字病理学 | 头颈癌 | MRI | nnUNetv2结合自动编码器 | 医学图像 | 150名训练患者和50名测试患者 | NA | NA | NA | NA |
| 1910 | 2025-10-07 |
Deep learning algorithms enable MRI-based scapular morphology analysis with values comparable to CT-based assessments
2025-01-10, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84107-7
PMID:39794358
|
研究论文 | 本研究开发了基于深度学习的MRI肩胛骨形态分析方法,其准确性可与CT评估相媲美 | 首次开发能够从各向异性分辨率和有限视野的MRI中自动进行肩胛骨三维形态分析的深度学习方法 | 方法依赖于配对CT数据进行训练,且样本量未明确说明 | 开发从诊断性MRI自动分析肩胛骨形态的方法,克服传统MRI评估的局限性 | 肩胛骨形态特征,包括关键肩角、关节盂倾角和版本角 | 医学影像分析 | 肩袖损伤 | MRI, CT | 深度学习分割网络 | 医学影像(MRI和CT) | NA | NA | NA | 角度测量精度,组内相关系数 | NA |
| 1911 | 2025-05-10 |
Unsupervised neural network-based image stitching method for bladder endoscopy
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0311637
PMID:39964991
|
研究论文 | 提出了一种基于无监督神经网络的膀胱内窥镜图像拼接方法 | 无需标记数据集,采用无监督学习方法进行图像拼接,解决了医学数据标记困难的问题 | 未提及具体的数据集规模或多样性限制 | 开发一种无需标记数据的膀胱内窥镜图像拼接方法,以扩展视野并辅助诊断 | 膀胱内窥镜图像 | 计算机视觉 | 膀胱疾病 | 无监督深度学习 | 无监督对齐网络和无监督融合网络 | 图像 | NA | NA | NA | NA | NA |
| 1912 | 2025-05-10 |
A Robust Approach to Early Glaucoma Identification from Retinal Fundus Images using Dirichlet-based Weighted Average Ensemble and Bayesian
Optimization
2025, Current medical imaging
IF:1.1Q3
|
研究论文 | 提出一种基于Dirichlet加权平均集成和贝叶斯优化的稳健方法,用于从视网膜眼底图像中早期识别青光眼 | 采用集成学习方法结合多个深度学习模型,并利用贝叶斯优化自动调整超参数,显著提高了诊断准确性和模型泛化能力 | 研究仅使用了两个公开数据集,可能无法涵盖所有临床场景 | 提高青光眼早期诊断的准确性和可靠性 | 视网膜眼底图像 | 数字病理 | 青光眼 | 深度学习 | CNN, MobileNet, DenseNet201 | 图像 | 1,355张视网膜眼底图像 | NA | NA | NA | NA |
| 1913 | 2025-05-10 |
Application of machine learning in predicting consumer behavior and precision marketing
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0321854
PMID:40327711
|
research paper | 研究机器学习在消费者行为预测和精准营销中的应用 | 比较了四种机器学习模型(SVM、XGBoost、CatBoost和BPANN)在预测消费者购买意愿方面的性能,并提出了优化营销策略的具体应用 | 未来研究可以通过引入更多种类的非结构化数据(如消费者评论、图像、视频和社交媒体数据)来提高模型的预测能力 | 研究机器学习在消费者行为预测和精准营销中的应用 | 消费者的购买行为 | machine learning | NA | NA | SVM, XGBoost, CatBoost, BPANN | 结构化数据 | NA | NA | NA | NA | NA |
| 1914 | 2025-05-10 |
Deep learning for accurate B-line detection and localization in lung ultrasound imaging
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1560523
PMID:40330027
|
研究论文 | 该研究开发了基于YOLOv5和YOLOv8的改进模型YOLOv5-PBB和YOLOv8-PBB,用于肺部超声图像中B线的精确检测和定位 | 提出了两种改进的深度学习模型YOLOv5-PBB和YOLOv8-PBB,采用多边形边界框(PBBs)进行B线定位,并整合了图像预处理技术以提高图像质量 | 研究主要基于公开数据集和乌干达医疗设施的数据,可能在其他地区或人群中的泛化性有待验证 | 开发自动化的B线检测和定位方法,以解决资源有限地区专业人员不足的问题 | 肺部超声图像中的B线伪影 | 计算机视觉 | COVID-19肺炎、心力衰竭、慢性肾病、间质性肺病 | 深度学习 | YOLOv5-PBB, YOLOv8-PBB | 图像 | 来自公开数据库和乌干达医疗设施的多样化数据集 | NA | NA | NA | NA |
| 1915 | 2025-05-10 |
Enhanced breast cancer diagnosis using modified InceptionNet-V3: a deep learning approach for ultrasound image classification
2025, Frontiers in physiology
IF:3.2Q2
DOI:10.3389/fphys.2025.1558001
PMID:40330252
|
research paper | 该研究通过改进的InceptionNet-V3深度学习模型,提高了超声图像在乳腺癌诊断中的分类准确性 | 提出了一种集成改进InceptionV3特征的深度神经网络模型,显著提高了乳腺癌分类的准确率 | 模型训练依赖于预训练模型和特定数据集,可能在不同数据分布下表现不同 | 开发自动化且可靠的乳腺癌诊断方法,提高诊断准确性和效率 | 乳腺癌的超声图像 | digital pathology | breast cancer | deep learning, transfer learning | modified InceptionV3, GoogLeNet, ShuffleNet, AlexNet, VGG-16, SqueezeNet | image | NA | NA | NA | NA | NA |
| 1916 | 2025-05-10 |
High-resolution automated free-breathing coronary magnetic resonance angiography in comparison with coronary computed tomography angiography
2025-Jan, European heart journal. Imaging methods and practice
DOI:10.1093/ehjimp/qyaf037
PMID:40330538
|
研究论文 | 本研究评估了一种新型自动化iNAV冠状动脉磁共振血管成像(CMRA)协议与冠状动脉计算机断层扫描血管成像(CCTA)在冠状动脉疾病分类中的一致性 | 开发了一种结合图像导航器(iNAV)与自动化扫描规划的CMRA协议,以提高图像质量的稳定性 | 研究样本量较小(95人),且CMRA与CCTA在CAD-RADS分类中的一致性随疾病严重程度增加而降低 | 评估自动化iNAV CMRA协议在冠状动脉疾病诊断中的临床价值 | 疑似或确诊冠状动脉疾病的患者 | 数字病理学 | 心血管疾病 | 冠状动脉磁共振血管成像(CMRA)、冠状动脉计算机断层扫描血管成像(CCTA) | 深度学习辅助自动化扫描规划 | 医学影像 | 95名个体 | NA | NA | NA | NA |
| 1917 | 2025-05-10 |
Relationship between cerebrospinal fluid circulation markers, brain degeneration, and cognitive impairment in cerebral amyloid angiopathy
2025, Frontiers in aging neuroscience
IF:4.1Q2
DOI:10.3389/fnagi.2025.1549072
PMID:40330595
|
research paper | 研究脑淀粉样血管病(CAA)患者脑脊液循环标志物与脑退化和认知障碍的关系 | 首次探讨脑脊液循环标志物在CAA患者中的变化及其与脑退化和认知障碍的关联 | 样本量较小,且仅基于ADNI3数据库,可能影响结果的普遍性 | 探究脑脊液循环标志物在CAA患者中的变化及其与脑退化和认知障碍的关系 | 52名认知障碍患者(26名CAA患者和26名非CAA患者)及26名认知正常对照 | digital pathology | cerebral amyloid angiopathy | MRI, 扩散张量成像(DTI-ALPS), 正电子发射断层扫描(PET) | deep learning-based method | image | 52名认知障碍患者和26名认知正常对照 | NA | NA | NA | NA |
| 1918 | 2025-05-10 |
Characterizing hip joint morphology using a multitask deep learning model
2025-Jan, Journal of hip preservation surgery
IF:1.4Q3
DOI:10.1093/jhps/hnae041
PMID:40331073
|
research paper | 该研究开发了一种基于YOLOv5和ConvNeXt-Tiny架构的多任务深度学习模型,用于预测髋关节形态学特征 | 首次将YOLOv5和ConvNeXt-Tiny架构结合用于髋关节形态学特征的预测 | 模型在检测cam畸形时的准确率相对较低(78.0%) | 开发准确高效的机器学习算法用于髋关节形态病理学的诊断 | 髋关节形态学特征(包括cam畸形、坐骨棘征、发育不良等) | digital pathology | developmental dysplasia of the hip, femoroacetabular impingement | deep learning | YOLOv5, ConvNeXt-Tiny | medical imaging | NA | NA | NA | NA | NA |
| 1919 | 2025-05-10 |
Sentiment mining of online comments of sports venues: Consumer satisfaction and its influencing factors
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0319476
PMID:40333946
|
研究论文 | 基于互联网大数据、深度学习、主题分析和社交网络分析,对体育场馆在线评论进行情感挖掘,以捕捉消费者满意度及其影响因素 | 利用互联网大数据和深度学习技术进行情感挖掘,替代传统耗时、资源密集且覆盖范围有限的调查方法 | 未提及具体样本量或数据来源的局限性 | 研究体育场馆消费者满意度及其影响因素,以开发更消费者友好的服务 | 体育场馆的在线评论 | 自然语言处理 | NA | 情感挖掘、主题分析、社交网络分析 | 深度学习 | 文本 | NA | NA | NA | NA | NA |
| 1920 | 2025-05-10 |
A KAN-based hybrid deep neural networks for accurate identification of transcription factor binding sites
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0322978
PMID:40334196
|
research paper | 提出了一种基于KAN的混合深度神经网络CBR-KAN,用于准确识别转录因子结合位点 | 结合多尺度卷积模块、BiLSTM网络和KAN网络,通过残差连接优化模型,显著提高了预测准确率 | 未提及模型在更大规模数据集上的泛化能力 | 预测转录因子结合位点,以支持药物设计和开发 | DNA序列中的转录因子结合位点 | bioinformatics | NA | ChIP-seq | CNN, BiLSTM, KAN | DNA序列数据 | 50个常见的ChIP-seq基准数据集 | NA | NA | NA | NA |