深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202512] [清除筛选条件]
当前共找到 12516 篇文献,本页显示第 2361 - 2380 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
2361 2025-07-14
Deep learning on routine full-breast mammograms enhances lymph node metastasis prediction in early breast cancer
2025-Jul-10, NPJ digital medicine IF:12.4Q1
research paper 该研究利用深度学习技术分析常规乳腺X光片,以提高早期乳腺癌淋巴结转移的预测准确性 首次将深度学习应用于常规全乳X光片,结合临床变量显著提升了淋巴结转移的预测性能 研究为回顾性设计,样本仅来自瑞典三家机构,可能影响结果的普适性 开发术前预测乳腺癌淋巴结转移的影像学模型,为手术降级提供依据 1265名cN0 T1-T2期乳腺癌患者(接受初次手术,未进行新辅助治疗) digital pathology breast cancer deep learning CNN image 1265例患者的乳腺X光片和临床病理数据
2362 2025-07-14
Rprot-Vec: a deep learning approach for fast protein structure similarity calculation
2025-Jul-10, BMC bioinformatics IF:2.9Q1
research paper 提出了一种名为Rprot-Vec的深度学习模型,用于基于蛋白质一级序列数据快速预测蛋白质结构相似性和进行同源检测 结合双向GRU和多尺度CNN层与ProtT5编码,仅使用一级序列数据即可准确快速预测蛋白质结构相似性,参数数量仅为TM-vec的41%但性能更优 未明确提及具体局限性 开发一种高效、可扩展的基于序列的蛋白质结构相似性预测方法 蛋白质序列和结构 computational biology NA deep learning bidirectional GRU, multi-scale CNN, ProtT5 protein sequence data 三个精选训练数据集(CATH_TM_score_S/M/L)
2363 2025-07-14
Attention-based multimodal deep learning for interpretable and generalizable prediction of pathological complete response in breast cancer
2025-Jul-10, Journal of translational medicine IF:6.1Q1
研究论文 该研究开发了一种基于注意力的多模态深度学习模型,用于预测乳腺癌患者对新辅助化疗的病理完全缓解(pCR) 结合了3D卷积神经网络和自注意力机制,以捕捉空间和跨模态的交互,提高了模型的可解释性和跨机构的泛化能力 模型的预测性能仍有提升空间,AUC值在内部和外部验证集上分别为0.73和0.71 预测乳腺癌患者对新辅助化疗的病理完全缓解(pCR) 乳腺癌患者 数字病理学 乳腺癌 MRI成像和临床特征分析 3D CNN和自注意力机制 医学影像和临床数据 I-SPY 2试验数据集(N=660)和I-SPY 1数据集(N=114)
2364 2025-07-14
A Deep Learning Model for Comprehensive Automated Bone Lesion Detection and Classification on Staging Computed Tomography Scans
2025-Jul-08, Academic radiology IF:3.8Q1
research paper 开发了一种深度学习模型,用于在分期CT扫描上自动检测和分类骨病变 使用nnUNet模型对骨病变进行检测和分类,具有高准确性和潜力纠正医生错误 在部分良性患者中出现了假阳性 提高骨病变检测和分类的自动化水平,以辅助癌症分期 骨病变(包括良性和恶性的成骨性和溶骨性病变) digital pathology prostate cancer CT扫描 nnUNet image 402名患者的CT扫描(测试集包含69名患者,其中32名有骨转移)
2365 2025-07-14
Noise-inspired diffusion model for generalizable low-dose CT reconstruction
2025-Jul-08, Medical image analysis IF:10.7Q1
研究论文 提出了一种受噪声启发的扩散模型NEED,用于通用低剂量CT重建,通过双域重建策略提高重建质量和泛化性能 设计了移位泊松扩散模型和对偶引导扩散模型,分别针对投影数据和重建图像进行优化,无需配对数据训练即可适应不同剂量水平 未明确说明模型在极端低剂量情况下的表现及计算效率 提升深度学习模型在未见剂量水平的低剂量CT重建中的泛化能力 低剂量CT图像重建 数字病理 NA 扩散模型 NEED(噪声启发扩散模型) CT图像 两个数据集(未明确具体数量)
2366 2025-07-14
TTI and pH-responsive dual colorimetric sensor arrays combined with a cascaded deep learning approach for dynamic monitoring of freshness of fresh-cut fruits
2025-Jul-08, Food chemistry IF:8.5Q1
研究论文 开发了一种结合pH响应指示剂和时间温度积分器(TTIs)的双色比色传感器阵列,用于动态监测鲜切水果的新鲜度 结合pH响应指示剂和TTIs的双色比色传感器阵列,以及级联深度学习框架,显著提高了鲜切水果货架期预测的准确性 NA 解决冷链中温度波动和包装失效导致的鲜切水果货架期预测与实际腐败之间的差异问题 鲜切水果(芒果和猕猴桃) 机器视觉与深度学习 NA 双色比色传感器阵列,级联深度学习框架 YOLOv8, ResNet-18, 贝叶斯模型 图像 NA
2367 2025-07-14
Artificial intelligence in nutrition and ageing research - A primer on the benefits
2025-Jul-07, Maturitas IF:3.9Q1
综述 本文综述了人工智能在营养与衰老研究中的应用及其潜在益处 探讨了AI在预测健康结果、识别风险因素及自动化饮食评估中的创新应用 数据质量、伦理问题及AI模型的可解释性等挑战阻碍了AI的广泛应用 促进AI技术在营养与健康老龄化领域的理解与应用 老年人群的健康管理与营养干预 机器学习 老年疾病 机器学习、自然语言处理、深度学习 NA 大型数据集 NA
2368 2025-07-14
CGNet: A Complex-valued Graph Network for jointly learning amplitude-phase information in EEG-based brain-computer interfaces
2025-Jul-05, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种复数值图网络(CGNet),用于在基于EEG的脑机接口中联合学习振幅和相位信息 CGNet通过复数值表示同时编码振幅和相位信息,解决了现有深度学习方法独立处理振幅和相位的问题,并设计了双尺度复数值卷积网络、空间注意力模块和动态图卷积来捕获全面的EEG信号信息 NA 开发一种能够联合学习EEG信号中振幅和相位信息的深度学习方法,以提高脑机接口的分类性能 基于EEG的脑机接口中的运动想象和执行任务 脑机接口 NA EEG信号处理 CGNet, FBCGNet EEG信号 NA
2369 2025-07-14
Deep learning CAIPIRINHA-accelerated 3D MRI of the knee cartilage at 7 Tesla
2025-Jul-05, European journal of radiology IF:3.2Q1
research paper 本研究探讨了在7特斯拉磁场下,使用深度学习重建的CAIPIRINHA加速3D DESS膝关节软骨MRI的可行性和扫描时间减少程度 结合深度学习重建与CAIPIRINHA加速技术,在7T高场强下实现膝关节软骨成像,显著缩短扫描时间 当加速倍数超过6倍时,图像质量显著下降,且伪影增加 评估深度学习重建在7T高场强膝关节软骨MRI中的加速潜力 18名志愿者的35个膝关节 医学影像 骨关节疾病 3D双回波稳态(DESS)序列,CAIPIRINHA并行采集技术,深度学习重建 深度学习模型(未指定具体架构) MRI图像 35个膝关节(来自18名志愿者)
2370 2025-07-06
Corrigendum to "Automated sex and age estimation from orthopantomograms using deep learning: A comparison with human predictions" [Forensic Sci. Intern., vol. 374 (2025) 112531]
2025-Jul-03, Forensic science international IF:2.2Q1
NA NA NA NA NA NA NA NA NA NA NA NA
2371 2025-07-14
Exploring Biginelli hybrids in the AI-driven development of ruthenium complexes: Anticancer activity, DNA/HSA binding study, impacts on apoptosis and BCL-2/BCL-XL suppression
2025-Jul-03, Journal of inorganic biochemistry IF:3.8Q1
研究论文 本研究利用深度学习模型预测结合亲和力,设计具有抗癌潜力的四氢嘧啶(THPM)及其钌对伞花烃复合物,并评估其抗癌活性和分子机制 结合AI技术和传统化学方法,设计新型钌复合物,并验证其抗癌活性及分子机制 研究仅限于体外实验,未进行体内验证 开发新型钌基抗癌药物 四氢嘧啶(THPM)及其钌对伞花烃复合物 药物发现 癌症 深度学习模型、分子对接 深度学习 化学数据 10种化合物
2372 2025-07-14
SingleFrag: a deep learning tool for MS/MS fragment and spectral prediction and metabolite annotation
2025-Jul-02, Briefings in bioinformatics IF:6.8Q1
研究论文 本文介绍了一种名为SingleFrag的深度学习工具,用于预测MS/MS碎片和光谱以及代谢物注释 SingleFrag通过单独预测每个碎片而非整个光谱,超越了现有最先进的计算机模拟碎片工具 NA 解决由于缺乏全面的参考光谱库而导致的代谢物和小分子鉴定困难 代谢物和小分子的MS/MS光谱 机器学习 NA MS/MS 深度学习 光谱数据 三种先前未鉴定的人类样本中常见化合物
2373 2025-07-14
Chemical space visual navigation in the era of deep learning and Big Data
2025-Jul, Drug discovery today IF:6.5Q1
综述 本文综述了在深度学习和大数据时代下,化学空间可视化导航的算法和工具的最新进展 探讨了这些方法如何应对大数据挑战,并讨论了非传统应用,如QSAR/QSPR模型的视觉验证、交互式生成方法以及化学空间地图作为数字艺术的使用 NA 分析大数据时代下药物化学领域的新挑战,并提出可视化化学空间的方法和工具 化学空间的可视化导航算法和工具 药物化学 NA QSAR/QSPR模型 NA 化学结构数据 NA
2374 2025-07-14
AI-based pelvic floor surface electromyography reference ranges and high-precision pelvic floor dysfunction diagnosis
2025-Jul, EBioMedicine IF:9.7Q1
研究论文 本研究通过AI技术建立多维度的盆底表面肌电数据库,并开发AI-Diagnostician-PFD诊断模型,以提高盆底功能障碍(PFDs)的诊断准确性 利用AI技术建立多维度的盆底表面肌电数据库,并开发AI-Diagnostician-PFD诊断模型,其性能优于传统的Glazer标准和经典机器学习及深度学习模型 研究样本虽来自多个中心,但仍可能存在地域和人群的局限性 建立盆底表面肌电的多维数据库,并开发AI诊断模型以提高PFDs的诊断准确性 1605名来自中国21个中心的参与者 数字病理 盆底功能障碍 表面肌电图(sEMG) AI-Diagnostician-PFD 肌电数据 1605名参与者
2375 2025-07-14
Deep operator network models for predicting post-burn contraction
2025-Jul, Clinical biomechanics (Bristol, Avon)
research paper 本研究探讨了使用深度算子网络作为有限元模拟的替代模型,用于预测烧伤后伤口收缩 提出了一种改进的深度算子网络架构,通过整合初始伤口形状信息和应用正弦增强来加强边界条件 研究仅基于三种初始伤口形状进行训练,可能限制了模型的泛化能力 开发一种高效的方法来预测烧伤后伤口收缩,以辅助医疗治疗规划 烧伤后伤口收缩的预测 machine learning burn injuries deep operator network neural operator simulation data 基于三种初始伤口形状的训练集和测试集
2376 2025-07-14
Short-horizon neonatal seizure prediction using EEG-based deep learning
2025-Jul, PLOS digital health
research paper 本研究探讨了基于定量脑电图(QEEG)和深度学习(DL)的短时程新生儿癫痫预测方法 首次研究了分钟级别的高时间分辨率短时程新生儿癫痫预测,填补了该领域的研究空白 模型校准效果中等,预期校准误差为0.106,需要进一步验证 开发短时程新生儿癫痫预测系统 新生儿癫痫发作 digital pathology neurological disease quantitative electroencephalography (QEEG) ConvLSTM EEG data 132名新生儿,共281小时EEG数据
2377 2025-07-14
Enhancing tremor classification: Transformer-based analysis of biomechanics patterns for Parkinson's and essential tremor
2025-Jul, Clinical biomechanics (Bristol, Avon)
研究论文 使用基于Transformer的深度学习模型分析生物力学模式,以区分帕金森病和特发性震颤 首次采用Transformer模型结合多头注意力机制,从多传感器运动数据中解码动态运动任务中的生物力学模式 研究未涉及其他类型的震颤疾病,且样本量未明确说明 开发一个多类分类系统,用于区分特发性震颤、帕金森病和健康对照组 特发性震颤、帕金森病患者及健康对照组 机器学习 帕金森病 多传感器运动数据采集 Transformer 运动信号数据 NA
2378 2025-07-14
Pediatric pancreas segmentation from MRI scans with deep learning
2025-Jun-16, Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.] IF:2.8Q2
研究论文 本研究评估并验证了用于儿童胰腺MRI分割的深度学习算法PanSegNet,在急性胰腺炎、慢性胰腺炎及健康儿童中的表现 PanSegNet是首个经过验证的用于胰腺MRI分割的深度学习解决方案,在健康和疾病状态下均达到专家水平 研究样本量相对较小(84例MRI扫描),且数据来自单一机构 评估和验证深度学习算法在儿童胰腺MRI分割中的应用 2-19岁儿童,包括健康儿童及被诊断为急性或慢性胰腺炎的患者 数字病理学 胰腺炎 MRI扫描 深度学习算法(PanSegNet) MRI图像 84例MRI扫描(42例健康儿童,42例胰腺炎患者)
2379 2025-07-14
Enhancing Dementia Classification for Diverse Demographic Groups: Using Vision Transformer-Based Continuous Scoring of Clock Drawing Tests
2025-Jun-10, The journals of gerontology. Series B, Psychological sciences and social sciences
研究论文 本研究开发了一种基于深度学习神经网络的连续时钟绘图测试(CDT)评分方法,用于提高痴呆症分类的准确性 使用深度学习神经网络生成连续CDT评分,相比传统序数评分提供更细粒度的痴呆分类阈值,并针对不同人口群体调整阈值 研究样本虽然具有全国代表性,但可能仍需在更广泛人群中验证模型的普适性 提高痴呆症筛查的准确性和适应性 老年人群体(来自NHATS研究的全国代表性样本) 数字病理学 老年痴呆症 深度学习神经网络(DLNN) Vision Transformer 图像(时钟绘图测试图像) 来自NHATS研究的全国代表性老年人样本(具体数量未明确说明)
2380 2025-07-14
Deep learning applications in orthopaedics: a systematic review and future directions
2025 May-Jun, Acta ortopedica mexicana
PMID:40645786
系统综述 本文综述了人工智能和深度学习在骨科中的应用,并探讨了未来的研究方向 分析了当前AI和深度学习工具在骨科领域的应用,识别了最常用的工具和方法 研究间异质性高,方法和术语差异大,可能导致对诊断准确性的高估 分析AI和深度学习在骨科风险、结果评估、影像学和基础科学领域的应用 骨科领域的影像评估、脊柱手术、结果评估、基础AI骨科教育和基础科学应用 数字病理 骨科疾病 深度学习 CNN 影像 595项研究(包括281项影像评估、102项脊柱手术、95项结果评估、84项基础AI骨科教育和33项基础科学应用)
回到顶部