本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4561 | 2025-10-29 |
Reducing False Alarms in Lung Cancer Screening: The Promise of Deep Learning
2025-Oct, Radiology
IF:12.1Q1
DOI:10.1148/radiol.252917
PMID:41147921
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 4562 | 2025-10-29 |
DL-SDE: A deep learning framework for source depth estimation in shallow water using vertical linear array
2025-Oct-01, The Journal of the Acoustical Society of America
IF:2.1Q1
DOI:10.1121/10.0039667
PMID:41147943
|
研究论文 | 提出一种基于深度学习的浅水声源深度估计框架DL-SDE,通过多尺度卷积和残差多头自注意力模块捕捉垂直线阵中的声波干涉模式 | 首次将多尺度局部干涉模式与全局非均匀关系建模相结合,通过物理机制引导的深度学习框架解决水下声源深度估计问题 | 性能在100Hz以上频率和覆盖至少50%水柱的阵列深度时保持稳定,对更低频率或更浅阵列的适用性未验证 | 开发鲁棒且准确的水下声源深度估计方法 | 浅水环境中的水下声源 | 机器学习 | NA | 垂直线性阵列声学测量 | CNN, 自注意力机制 | 声学干涉模式数据 | NA | 深度学习框架 | 多尺度卷积模块, 残差多头自注意力模块 | 平均绝对误差, 可信定位概率 | NA |
| 4563 | 2025-10-29 |
Deep learning for automated boundary detection and segmentation in organ donation photography
2025-Sep, Innovative surgical sciences
IF:1.7Q2
DOI:10.1515/iss-2024-0022
PMID:40568340
|
研究论文 | 开发用于器官捐献摄影中肾脏和肝脏自动边界检测与分割的深度学习模型 | 首次在器官捐献摄影领域应用深度学习进行精确自动分割,比较了两种新颖模型(Detectron2和YoloV8)与传统背景去除工具的性能 | 研究仅针对肾脏和肝脏器官,未涉及其他器官类型 | 开发能够准确从背景中分割器官的深度学习模型,以支持医学摄影中的计算机视觉应用 | 肾脏和肝脏的器官捐献摄影图像 | 计算机视觉 | 器官移植 | 医学摄影 | 深度学习分割模型 | 图像 | 训练/内部验证集(821张肾脏图像和400张肝脏图像),外部验证集(203张肾脏图像和208张肝脏图像) | Detectron2 | Detectron2, YoloV8 | IoU | NA |
| 4564 | 2025-10-29 |
External Test of a Deep Learning Algorithm for Pulmonary Nodule Malignancy Risk Stratification Using European Screening Data
2025-Sep, Radiology
IF:12.1Q1
DOI:10.1148/radiol.250874
PMID:40956165
|
研究论文 | 本研究使用欧洲三大肺癌筛查试验数据对深度学习算法进行外部测试,评估其在肺结节恶性风险分层中的性能 | 首次在欧洲多中心筛查数据上对深度学习算法进行外部验证,并与PanCan模型进行对比 | 回顾性研究设计,数据来源于特定欧洲人群 | 评估深度学习算法在肺结节恶性风险分层中的外部验证性能 | 来自丹麦、意大利和荷兰-比利时肺癌筛查试验的参与者 | 医学影像分析 | 肺癌 | 低剂量CT筛查 | 深度学习算法 | CT影像 | 4146名参与者,7614个良性结节和180个恶性结节 | NA | NA | AUC, 敏感性, 假阳性率 | NA |
| 4565 | 2025-10-29 |
Radiomics and deep learning methods for predicting the growth of subsolid nodules based on CT images
2025-Aug-29, Medicine
IF:1.3Q2
DOI:10.1097/MD.0000000000044104
PMID:40898494
|
研究论文 | 本研究通过结合影像组学和深度学习方法,基于CT图像预测亚实性肺结节的生长风险 | 首次将影像组学特征与深度学习模型通过基于ResNet的融合网络进行集成,显著提升了亚实性结节生长预测性能 | 回顾性研究设计,样本量相对有限(387个结节),需要多中心前瞻性验证 | 评估深度学习和影像组学方法在预测亚实性肺结节生长方面的临床应用价值 | 353名患者的387个亚实性肺结节 | 医学影像分析 | 肺癌 | CT成像 | 深度学习, 影像组学 | CT图像 | 387个亚实性肺结节(195个生长组,192个非生长组) | NA | ResNet18 | AUC, 决策曲线分析 | NA |
| 4566 | 2025-10-29 |
Artificial intelligence in joint arthroplasty: A bibliometric analysis of global research trends (2001-2025)
2025-Aug-29, Medicine
IF:1.3Q2
DOI:10.1097/MD.0000000000044136
PMID:40898573
|
文献计量分析 | 通过文献计量分析探讨2001-2025年人工智能在关节置换领域的研究趋势和热点 | 首次系统分析人工智能在关节置换领域的全球研究趋势和发展脉络 | 仅基于Web of Science数据库,可能未涵盖所有相关文献 | 揭示人工智能在关节置换领域的研究重点和全球发展趋势 | 关节置换相关的人工智能研究文献 | 医学信息学 | 骨科疾病 | 文献计量分析 | NA | 文献数据 | 533篇出版物 | CiteSpace, VOSviewer, Scimago Graphica | NA | NA | NA |
| 4567 | 2025-10-29 |
On the Utility of Virtual Staining for Downstream Applications as it relates to Task Network Capacity
2025-Aug-06, bioRxiv : the preprint server for biology
DOI:10.1101/2025.08.04.668552
PMID:40799532
|
研究论文 | 系统研究虚拟染色技术对下游临床应用效用的影响,重点关注任务网络容量的作用 | 首次系统研究虚拟染色对下游任务性能的影响,并揭示任务网络容量在此过程中的关键作用 | 仅使用生物数据集进行实证评估,未涉及更广泛的临床场景 | 评估虚拟染色技术对下游生物或临床任务的实际效用 | 虚拟染色生成的合成荧光图像及其对分割和分类任务的影响 | 数字病理 | NA | 深度学习图像到图像转换 | NA | 图像 | NA | NA | NA | 分割性能, 分类性能 | NA |
| 4568 | 2025-10-29 |
Impact of Deep Learning-Based Image Conversion on Fully Automated Coronary Artery Calcium Scoring Using Thin-Slice, Sharp-Kernel, Non-Gated, Low-Dose Chest CT Scans: A Multi-Center Study
2025-Aug, Korean journal of radiology
IF:4.4Q1
DOI:10.3348/kjr.2025.0177
PMID:40527737
|
研究论文 | 评估基于深度学习的图像转换技术对使用薄层、锐利核、非门控、低剂量胸部CT扫描进行自动冠状动脉钙化评分的准确性影响 | 首次在多中心研究中利用深度学习技术将低剂量CT图像转换为模拟标准钙化评分CT图像,显著提升了自动钙化评分的准确性 | 研究为回顾性设计,样本量相对有限(225对图像),仅使用特定厂商的软件进行图像转换 | 提高低剂量胸部CT扫描在自动冠状动脉钙化评分中的准确性和临床应用价值 | 来自四个医疗机构的225对低剂量CT和钙化评分CT图像 | 医学影像分析 | 心血管疾病 | 深度学习图像转换,CT成像 | 深度学习模型 | 医学CT图像 | 225对来自四个医疗机构的LDCT和CSCT图像 | NA | NA | Bland-Altman分析,一致性相关系数(CCC),加权kappa统计量 | NA |
| 4569 | 2025-10-29 |
Deep Learning-based Hierarchical Brain Segmentation with Preliminary Analysis of the Repeatability and Reproducibility
2025-Jul-31, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
IF:2.5Q2
DOI:10.2463/mrms.mp.2023-0124
PMID:38960679
|
研究论文 | 开发基于深度学习的层次化脑部分割方法并评估其体积测量的可重复性和再现性 | 提出新型深度学习层次化脑部分割方法,能够在临床可行时间内分割107个脑部子区域 | 仅使用11名健康受试者的扫描-重扫描数据进行评估,样本量有限 | 评估深度学习脑部分割方法在体积测量中的可重复性和再现性 | 人脑T1加权磁共振图像 | 医学图像分析 | 脑部疾病 | T1加权磁共振成像 | 深度学习模型 | 3D医学图像 | 486名受试者用于训练,11名健康受试者用于评估 | NA | 层次化分割模型 | 可重复性, 再现性 | NA |
| 4570 | 2025-10-29 |
Utility of Thin-slice Fat-suppressed Single-shot T2-weighted MR Imaging with Deep Learning Image Reconstruction as a Protocol for Evaluating the Pancreas
2025-Jul-31, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
IF:2.5Q2
DOI:10.2463/mrms.mp.2024-0017
PMID:38910138
|
研究论文 | 比较薄层脂肪抑制单次激发T2加权成像与深度学习图像重建和传统快速自旋回波T2加权成像在胰腺评估中的效用 | 首次将深度学习图像重建技术应用于薄层脂肪抑制单次激发T2加权成像,用于胰腺评估 | 回顾性研究设计,样本量较小(42例患者),仅针对胰腺癌患者 | 评估不同T2加权成像序列结合深度学习图像重建在胰腺成像中的性能 | 胰腺癌患者的MRI图像 | 医学影像分析 | 胰腺癌 | MRI(钆塞酸增强磁共振成像),T2加权成像,深度学习图像重建 | 深度学习 | 医学影像 | 42例胰腺癌患者(平均年龄70.2岁) | NA | NA | 信噪比,胰腺-病灶对比度,图像质量评分(5分制) | NA |
| 4571 | 2025-10-29 |
Thin-slice 2D MR Imaging of the Shoulder Joint Using Denoising Deep Learning Reconstruction Provides Higher Image Quality Than 3D MR Imaging
2025-Jul-31, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
IF:2.5Q2
DOI:10.2463/mrms.mp.2023-0115
PMID:38777762
|
研究论文 | 比较薄层2D磁共振成像结合深度学习去噪重建与3D磁共振成像在肩关节成像中的图像质量 | 首次将并行成像、部分傅里叶技术和深度学习去噪重建结合应用于肩关节薄层2D成像,并与传统3D成像进行系统比较 | 样本量较小(仅18例患者),未详细说明深度学习模型的具体架构和训练细节 | 评估薄层2D脂肪饱和质子密度加权成像结合先进重建技术在肩关节成像中的临床应用价值 | 肩关节磁共振图像 | 医学影像分析 | 肌肉骨骼疾病 | 磁共振成像,深度学习重建 | 深度学习 | 医学影像 | 18例患者 | NA | NA | 变异系数,Likert量表评分,Gwet一致性系数 | NA |
| 4572 | 2025-10-29 |
On the Utility of Virtual Staining for Downstream Applications as it relates to Task Network Capacity
2025-Jul-31, ArXiv
PMID:40766889
|
研究论文 | 系统研究虚拟染色技术对下游临床任务效用的影响,重点关注任务网络容量的作用 | 首次系统分析虚拟染色对下游任务性能的影响,并揭示任务网络容量在此过程中的关键作用 | 研究基于生物数据集进行实证评估,可能受限于特定数据集特性 | 评估虚拟染色技术对下游临床任务(如分割和分类)的实际效用 | 生物医学图像及其下游分析任务 | 数字病理 | NA | 深度学习图像到图像转换 | 深度学习网络 | 无标记图像、虚拟染色图像、真实荧光图像 | NA | NA | 图像到图像转换网络 | 分割性能、分类性能 | NA |
| 4573 | 2025-06-05 |
Geometric Deep Learning for Multimodal Data in CKD
2025-Jun-03, Journal of the American Society of Nephrology : JASN
IF:10.3Q1
DOI:10.1681/ASN.0000000778
PMID:40459949
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 4574 | 2025-10-26 |
VASCilia (Vision Analysis StereoCilia): A Napari Plugin for Deep Learning-Based 3D Analysis of Cochlear Hair Cell Stereocilia Bundles
2025-Sep-23, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.17.599381
PMID:38948743
|
研究论文 | 开发了一个名为VASCilia的Napari插件,用于基于深度学习的耳蜗毛细胞立体纤毛束3D分析 | 首个专门用于耳蜗毛细胞立体纤毛束3D分析的深度学习工具套件,包含五个深度学习模型和自动化计算工具 | NA | 开发自动化工具以解决耳蜗毛细胞立体纤毛束3D形态分析的挑战 | 耳蜗毛细胞立体纤毛束 | 计算机视觉 | 听力障碍 | 共聚焦显微镜,鬼笔环肽染色 | 深度学习模型 | 3D图像堆栈 | 约55个3D图像堆栈,包含502个内毛细胞束和1,703个外毛细胞束 | Napari | Z-Focus Tracker, PCPAlignNet, 分割模型, 位置预测工具, 分类工具 | NA | NA |
| 4575 | 2025-10-27 |
MCA-GAN: A lightweight Multi-scale Context-Aware Generative Adversarial Network for MRI reconstruction
2025-Dec, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110465
PMID:40780320
|
研究论文 | 提出一种轻量级多尺度上下文感知生成对抗网络MCA-GAN,用于加速MRI重建 | 通过双域生成器协同优化k空间和图像域表示,集成多个轻量级模块实现高效多尺度特征提取和全局上下文建模 | NA | 提高MRI重建质量同时显著降低计算成本 | MRI图像重建 | 医学影像处理 | NA | 磁共振成像 | GAN | MRI图像 | IXI、MICCAI 2013和MRNet膝关节数据集 | NA | MCA-GAN, 包含DWLA、AGRB、MSCMB、CSMS模块 | PSNR, SSIM | NA |
| 4576 | 2025-10-26 |
A robust deep learning system for screening of obstructive sleep apnea using T-F spectrum of ECG signals
2025-Nov, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2024.2359635
PMID:38829354
|
研究论文 | 提出一种基于心电信号时频谱分析的深度学习系统,用于阻塞性睡眠呼吸暂停的自动筛查 | 开发了轻量级深度卷积神经网络,相比基准模型参数量更少且准确率更高 | 未提及模型在外部验证集上的泛化能力及临床部署的实际效果 | 实现阻塞性睡眠呼吸暂停的自动化准确筛查 | 心电信号数据 | 医学信号处理 | 阻塞性睡眠呼吸暂停 | 心电信号分析,Stock-well变换 | 深度卷积神经网络 | 心电信号时频谱 | NA | NA | Alex-Net, Squeeze-Net, 自定义DCNN | 灵敏度, 特异度, 准确率, 阴性预测值, 精确率, F1分数, Fowlkes-Mallows指数 | NA |
| 4577 | 2025-10-26 |
RNAbpFlow: Base pair-augmented SE(3)-flow matching for conditional RNA 3D structure generation
2025-Aug-22, bioRxiv : the preprint server for biology
DOI:10.1101/2025.01.24.634669
PMID:39896539
|
研究论文 | 提出了一种基于序列和碱基对条件的SE(3)-等变流匹配模型,用于生成RNA三维结构 | 使用碱基对中心表示法,无需显式或隐式使用进化信息或同源结构模板即可端到端生成全原子RNA结构 | NA | 解决RNA三维结构预测的挑战,生成准确的RNA三维结构集合 | RNA分子 | 生物分子建模 | NA | 深度学习 | SE(3)-等变流匹配模型 | RNA三维结构数据 | NA | NA | RNAbpFlow | RNA拓扑采样和预测建模性能 | NA |
| 4578 | 2025-10-26 |
Powerful and accurate case-control analysis of spatial molecular data
2025-Aug-07, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.07.637149
PMID:39975274
|
研究论文 | 提出一种结合深度学习与统计原理的空间分子数据分析方法VIMA,用于识别与疾病相关的空间结构 | 引入变分推断微生态分析方法,通过变分自编码器集合提取组织斑块的数字“指纹”,定义数据依赖的“微生态”空间特征 | NA | 开发更灵活精确的空间分子数据分析方法,识别与疾病相关的关键空间结构 | 空间分子数据,包括免疫荧光显微镜、CODEX和空间转录组学数据 | 数字病理 | 类风湿关节炎,溃疡性结肠炎,痴呆 | 免疫荧光显微镜,CODEX,空间转录组学 | 变分自编码器 | 空间分子数据,组织斑块图像 | 涉及三种不同疾病和空间模态的数据集 | NA | 变分自编码器 | 校准性能 | NA |
| 4579 | 2025-10-26 |
Memorization Bias Impacts Modeling of Alternative Conformational States of Symmetric Solute Carrier Membrane Proteins with Methods from Deep Learning
2025-Apr-26, bioRxiv : the preprint server for biology
DOI:10.1101/2024.07.15.603529
PMID:39071413
|
研究论文 | 本文评估了深度学习建模中记忆效应对溶质载体膜蛋白替代构象状态预测的影响,并提出了一种结合ESM和模板建模的新方法 | 开发了结合ESM和基于模板建模的方法,利用SLC蛋白内部伪对称性来一致建模替代构象状态 | 方法主要适用于具有伪对称结构的SLC蛋白,对其他类型蛋白的适用性未验证 | 解决深度学习在建模膜蛋白多构象状态时的记忆偏差问题 | 溶质载体(SLC)膜蛋白超家族 | 机器学习 | 病毒感染 | 深度学习方法,进化尺度建模,模板建模 | AlphaFold2, AlphaFold3, ESM | 蛋白质序列,结构数据 | 多个整合膜蛋白转运体,包括SLC35F2 | AlphaFold, ESM | 深度学习蛋白质结构预测模型 | 与进化协方差数据比较验证 | NA |
| 4580 | 2025-10-25 |
Arthroscopy-validated diagnostic performance of sub-5-min deep learning super-resolution 3T knee MRI in children and adolescents
2025-Dec, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-025-04969-4
PMID:40493057
|
研究论文 | 评估5分钟内深度学习超分辨率3T膝关节MRI在儿童青少年中的诊断性能 | 首次在儿童青少年中验证结合六倍并行成像和同步多层采集的深度学习超分辨率快速MRI技术 | 回顾性研究,样本量有限(44例),年龄范围较窄(9-17岁) | 确定快速深度学习超分辨率膝关节MRI的诊断性能 | 患有膝关节疼痛的儿童和青少年患者 | 医学影像 | 膝关节疾病 | 深度学习超分辨率MRI,并行成像(PIx3),同步多层采集(SMSx2) | 深度学习 | MRI影像 | 44名儿童和青少年(24名男孩,平均年龄15±2岁) | NA | 超分辨率网络 | 灵敏度, 特异性, 准确率, AUC, 组内相关系数 | NA |