本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4861 | 2025-10-14 |
Manual and automated facial de-identification techniques for patient imaging with preservation of sinonasal anatomy
2025-Oct, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-025-03421-1
PMID:40439827
|
研究论文 | 提出一种保留鼻窦解剖结构的面部去标识化方法,并开发两种自动化工作流程 | 在保护患者隐私的同时保留鼻窦、鼻甲等耳鼻喉科相关解剖结构,解决了现有方法会遮蔽这些关键区域的问题 | 需要进一步使用活体患者照片验证效果 | 开发可靠的面部去标识化方法以保护患者隐私 | 成人头部CT扫描图像 | 医学影像处理 | 耳鼻喉疾病 | CT扫描,种子生长技术,图像分割 | 深度学习模型 | 医学影像 | 20例成人头部CT | 3D Slicer, nnU-Net | nnU-Net | Dice系数,修正Hausdorff距离,匹配率 | NA |
| 4862 | 2025-10-14 |
Transformer-based robotic ultrasound 3D tracking for capsule robot in GI tract
2025-Oct, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-025-03445-7
PMID:40490591
|
研究论文 | 提出一种基于Transformer和CNN的混合深度学习框架,用于胶囊机器人在胃肠道中的实时3D超声跟踪 | 首次将Transformer架构与CNN结合应用于胶囊机器人超声跟踪,能够处理长距离3D跟踪并在跟踪丢失时主动重新定位 | 仅在离体结肠模型中进行验证,尚未在活体动物和人体试验中评估生理影响 | 开发能够克服超声成像视野窄、气体区域可视性差和平面外运动检测困难的胶囊机器人跟踪系统 | 胃肠道胶囊机器人 | 计算机视觉 | 胃肠道疾病 | B模式超声成像 | CNN, Transformer | 超声图像 | 离体结肠模型 | NA | CNN-Transformer混合架构 | 质心定位误差, 检测准确率, 帧率 | NA |
| 4863 | 2025-10-14 |
Large-scale protein clustering in the age of deep learning
2025-Oct, Current opinion in structural biology
IF:6.1Q1
DOI:10.1016/j.sbi.2025.103078
PMID:40517452
|
综述 | 本文探讨了深度学习时代大规模蛋白质聚类方法的发展与应用 | 引入深度学习技术扩展了蛋白质相似性度量和聚类方法的广度、深度和多样性 | NA | 研究蛋白质聚类方法及其在功能注释转移中的应用 | 蛋白质家族和整个蛋白质宇宙 | 生物信息学 | NA | 蛋白质序列分析、结构解析 | 深度学习 | 蛋白质序列、结构数据 | 大规模蛋白质数据集 | NA | NA | NA | NA |
| 4864 | 2025-10-14 |
Identifying visible tissue in intraoperative ultrasound: a method and application
2025-Oct, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-025-03415-z
PMID:40580392
|
研究论文 | 提出一种识别术中超声可见组织的迭代滤波和拓扑方法,用于检测声影并构建感知显著性置信图 | 开发了新型探头-组织接触分析框架,在体内数据上实现优于深度学习和统计方法的声影分类性能 | 方法性能需在更广泛临床场景中验证,参数扰动和散斑噪声可能影响算法鲁棒性 | 改进术中超声扫描的探头-组织接触分析技术 | 术中超声扫描中的可见组织和探头-组织接触界面 | 医学影像分析 | NA | 超声成像 | NA | 超声图像 | 包含体内数据和医学体模数据的专用数据集 | NA | NA | Fβ分数, 归一化均方根误差 | NA |
| 4865 | 2025-10-14 |
Development and Validation of a Deep Learning System for the Provision of a District-Wide Diabetes Retinal Screening Service
2025 Sep-Oct, Clinical & experimental ophthalmology
DOI:10.1111/ceo.14560
PMID:40491217
|
研究论文 | 开发并验证一种用于地区性糖尿病视网膜筛查的双模态深度学习系统 | 提出结合眼底照片和光学相干断层扫描的双模态深度学习系统,用于糖尿病视网膜病变筛查 | 7.4%的图像无法分级,样本主要来自医院糖尿病诊所和普通诊所 | 评估深度学习系统在检测威胁视力糖尿病视网膜病变方面的性能和有效性 | 748名糖尿病患者(年龄≥10岁) | 计算机视觉 | 糖尿病视网膜病变 | 眼底摄影,光学相干断层扫描 | 深度学习 | 图像 | 748名前瞻性招募的糖尿病患者 | NA | NA | 灵敏度,特异度,AUC | NA |
| 4866 | 2025-10-13 |
Model predictive control of nonlinear dynamical systems based on long sequence stable Koopman network
2025-Nov, ISA transactions
IF:6.3Q1
DOI:10.1016/j.isatra.2025.07.003
PMID:40653404
|
研究论文 | 提出一种基于长序列稳定Koopman网络的非线性动力系统模型预测控制方法 | 提出SDKN-MPC方法,通过稳定Koopman求解器算法获得稳定Koopman算子,结合神经网络训练嵌入函数,解决了传统深度学习方法收敛慢和长期预测稳定性不足的问题 | NA | 解决非线性动力系统的控制问题 | 非线性动力系统 | 机器学习 | NA | Koopman算子方法 | 神经网络 | 动力系统数据 | NA | NA | 稳定深度Koopman网络 | 收敛速度,预测性能 | NA |
| 4867 | 2025-10-13 |
Exploring stable isotope patterns in monthly precipitation across Southeast Asia using contemporary deep learning models and SHapley Additive exPlanations (SHAP) techniques
2025-Oct, Isotopes in environmental and health studies
IF:1.1Q4
DOI:10.1080/10256016.2025.2508811
PMID:40522311
|
研究论文 | 本研究使用深度神经网络和SHAP技术分析东南亚地区降水稳定同位素模式及其与气候因子的关系 | 首次将深度神经网络与SHAP可解释性技术结合应用于热带地区降水稳定同位素模拟,揭示了气候因子与同位素含量的非线性相互作用 | 研究仅涵盖东南亚六个关键站点,区域覆盖范围有限,且站点分布不均匀 | 开发能够准确模拟降水稳定同位素含量的机器学习模型,理解大尺度气候模式与局部气象参数对同位素的影响 | 东南亚六个站点的月降水稳定同位素数据(曼谷、吉隆坡、雅加达、哥打巴鲁、查亚普拉、新加坡) | 机器学习 | NA | 稳定同位素分析 | DNN, PLSR | 气象数据、同位素数据 | 东南亚6个站点的月降水数据 | NA | 深度神经网络 | 准确率 | NA |
| 4868 | 2025-08-07 |
Dynamic and interpretable deep learning model for predicting respiratory failure following cardiac surgery
2025-Aug-05, BMC anesthesiology
IF:2.3Q2
DOI:10.1186/s12871-025-03239-z
PMID:40764535
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 4869 | 2025-05-03 |
Should end-to-end deep learning replace handcrafted radiomics?
2025-Oct, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07314-y
PMID:40314811
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 4870 | 2025-10-06 |
Construction and preliminary trial test of a decision-making app for pre-hospital damage control resuscitation
2025-Sep, Chinese journal of traumatology = Zhonghua chuang shang za zhi
DOI:10.1016/j.cjtee.2024.11.001
PMID:40087116
|
研究论文 | 本研究开发了一款用于院前损伤控制复苏的决策应用程序,并通过动物模型试验初步验证其有效性和可用性 | 首次结合三种文本分割算法开发院前损伤控制复苏决策应用,并在动物模型中进行效果验证 | 研究样本量较小(16名医学生和12只小型猪),需要在更大规模人群中进一步验证 | 开发院前损伤控制复苏决策支持系统并验证其效果 | 严重创伤患者的院前复苏决策过程 | 医疗决策支持系统 | 创伤性疾病 | 文本分割算法、血栓弹力图、常规凝血测试、血细胞计数、血气分析 | 字典分割、机器学习、深度学习 | 文本数据、实验室检测数据、生理参数 | 16名五年级医学生和12只巴马小型猪 | Spring Boot, B/S架构 | NA | 决策时间、平均动脉压、氧饱和度、纤维蛋白原浓度、最大振幅、R值、李克特量表评分 | NA |
| 4871 | 2025-10-05 |
YOLOv5-aided paper-based microfluidic intelligent sensing platform for multiplex sweat biomarker analysis
2025-Dec-15, Biosensors & bioelectronics
IF:10.7Q1
DOI:10.1016/j.bios.2025.117978
PMID:40945114
|
研究论文 | 开发了一种基于YOLOv5的纸基微流体智能传感平台,用于汗液中多种生物标志物的检测 | 结合易制造的纸基微流控芯片、智能手机成像和深度学习框架,实现了99.5%的平均精度 | 未明确说明样本规模和计算资源需求 | 开发一种成本效益高、便携且可重复的汗液生物标志物检测方法 | 汗液中的铁离子、氯离子和葡萄糖 | 计算机视觉 | NA | 比色检测、微流控技术 | CNN | 图像 | NA | PyTorch | YOLOv5 | 平均精度 | NA |
| 4872 | 2025-10-05 |
Efficient Visual Transformer by Learnable Token Merging
2025-Nov, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3588186
PMID:40663671
|
研究论文 | 提出一种可学习令牌合并的紧凑型视觉Transformer块LTM-Transformer,用于提升视觉任务的效率 | 通过可学习的令牌合并方案减少计算量,并基于信息瓶颈理论推导出可分离的变分上界来指导模型设计 | NA | 开发高效的视觉Transformer模型以降低计算成本同时保持或提升预测精度 | 视觉Transformer模型 | 计算机视觉 | NA | 深度学习 | Transformer | 图像 | NA | NA | LTM-Transformer, MobileViT, EfficientViT, ViT, Swin | FLOPs, 推理时间, 预测准确率 | NA |
| 4873 | 2025-10-05 |
Re-Boosting Self-Collaboration Parallel Prompt GAN for Unsupervised Image Restoration
2025-Nov, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3589606
PMID:40668718
|
研究论文 | 提出一种用于无监督图像恢复的自协作并行提示生成对抗网络框架 | 引入自协作策略,通过迭代增强修复器和提示学习模块,在不增加推理复杂度的情况下显著提升性能;提出再增强模块将自集成策略融入自协作框架 | 未明确说明具体数据集规模和应用场景限制 | 提升无监督图像恢复方法的性能 | 退化图像 | 计算机视觉 | NA | 生成对抗网络 | GAN | 图像 | NA | NA | 并行生成对抗分支架构 | PSNR(峰值信噪比) | NA |
| 4874 | 2025-10-05 |
NUPES: Non-Uniform Post-Training Quantization via Power Exponent Search
2025-Nov, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3593987
PMID:40758517
|
研究论文 | 提出一种通过幂指数搜索的非均匀后训练量化方法NUPES,用于深度神经网络特别是大语言模型的压缩部署 | 利用自同构保持标量乘法,通过幂函数变换实现非均匀量化,并提出在完整量化空间中学习新权重的优化范式 | 论文未明确说明具体计算资源需求和最大可处理模型规模 | 降低深度神经网络特别是大语言模型的内存占用和推理延迟 | 深度神经网络权重和激活值,特别关注大语言模型中的异常值 | 机器学习 | NA | 后训练量化 | Transformer | 神经网络权重和激活值 | NA | NA | Transformer, 大语言模型 | 压缩率,推理延迟,内存占用 | NA |
| 4875 | 2025-10-05 |
Protecting Feature Privacy in Person Re-Identification
2025-Nov, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3590979
PMID:40758524
|
研究论文 | 提出一种基于GAN的特征隐私保护行人重识别模型,通过双重对抗目标和两步训练策略平衡隐私保护与识别性能 | 引入GAN强制重建图像遵循原始图像分布,提出效用-可逆比(URR)评估指标,设计两步训练和惰性更新策略解决双重对抗优化难题 | 在保护隐私的同时仍会带来微小的识别精度损失 | 保护行人重识别中深度特征的隐私安全,防止特征被逆向还原为原始图像 | 行人重识别系统中的深度特征表示 | 计算机视觉 | NA | 生成对抗网络(GAN) | GAN, CNN | 图像 | NA | NA | GAN | 效用-可逆比(URR), 识别准确率 | NA |
| 4876 | 2025-10-05 |
EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation
2025-Nov, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3354997
PMID:38227417
|
研究论文 | 提出一种广义端到端概率性PnP方法EPro-PnP,用于单目物体姿态估计 | 将PnP构建为可输出SE(3)流形上姿态分布的概率层,通过最小化预测与目标姿态分布的KL散度来学习2D-3D对应关系 | 未明确说明方法在极端遮挡或光照条件下的鲁棒性 | 解决单目RGB图像中3D物体姿态估计问题 | 3D物体姿态 | 计算机视觉 | NA | 深度学习 | 神经网络 | RGB图像 | NA | NA | 可变形对应网络 | 姿态精度 | NA |
| 4877 | 2025-10-05 |
Deep Learning-Based Point Cloud Compression: An In-Depth Survey and Benchmark
2025-Nov, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3594355
PMID:40742848
|
综述 | 本文系统综述了基于深度学习的点云压缩方法,包括数据集介绍、算法演进、基准测试分析和未来趋势展望 | 首次对深度学习点云压缩领域进行全面系统综述,并进行了广泛的基准测试比较分析 | 作为综述性文章,主要依赖现有文献分析,缺乏原创性算法提出 | 总结深度学习点云压缩的研究进展并指明未来研究方向 | 点云压缩算法、数据集和国际标准 | 计算机视觉 | NA | 深度学习 | NA | 点云数据 | 多个点云数据集 | NA | NA | 基准测试比较 | NA |
| 4878 | 2025-10-05 |
SEMI-CAVA: A Causal Variational Approach to Semi-Supervised Learning
2025-Nov, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3594360
PMID:40742852
|
研究论文 | 提出一种结合因果推理和变分推断的半监督学习方法SEMI-CAVA | 将Mixup策略解释为随机干预并引入一致性损失以促进潜在表示的一致性,为学习到的潜在表示与真实因果因子对齐提供理论保证 | NA | 开发用于半监督学习的因果生成模型 | 医学数据集和标准基准数据集(CIFAR10, CIFAR100, SVHN) | 机器学习 | NA | 变分推断 | 生成模型 | 多模态医学数据,图像数据 | NA | NA | NA | NA | NA |
| 4879 | 2025-10-05 |
VLPose: Bridging the Domain Gap in Pose Estimation With Language-Vision Tuning
2025-Nov, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3594097
PMID:40788797
|
研究论文 | 提出了一种名为VLPose的新框架,通过语言-视觉调优来解决姿态估计中的领域差距问题 | 利用语言模型的潜力增强传统姿态估计模型的适应性,通过语言和视觉的协同作用扩展姿态估计模型的泛化能力和鲁棒性 | NA | 通过高效的调优策略弥合自然场景和人工场景之间的领域差距 | 人体姿态估计 | 计算机视觉 | NA | 语言-视觉调优 | NA | 图像 | HumanArt和MSCOCO数据集 | NA | VLPose | 准确率提升百分比 | NA |
| 4880 | 2025-10-05 |
Research hotspots and trends of pediatric bone age: A bibliometric and visualization analysis
2025-Oct-04, Lasers in medical science
IF:2.1Q2
DOI:10.1007/s10103-025-04643-0
PMID:41044432
|
文献计量分析 | 通过文献计量和可视化分析方法探讨儿科骨龄研究的热点与趋势 | 首次系统分析儿科骨龄研究领域的发展脉络,识别新兴研究方向如深度学习和人工智能 | 仅基于Web of Science数据库,可能遗漏其他数据库的重要文献 | 识别儿科骨龄评估领域的研究热点并预测未来发展趋势 | 1965-2024年间发表的4652篇儿科骨龄相关文献 | 文献计量学 | 儿科发育疾病 | 文献计量分析,可视化分析 | NA | 文献数据 | 4652篇出版物 | VOSviewer, CiteSpace, bibliometrix | NA | NA | NA |